Sharp propagation of chaos for the ensemble Langevin sampler

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-14 DOI:10.1112/jlms.13008
U. Vaes
{"title":"Sharp propagation of chaos for the ensemble Langevin sampler","authors":"U. Vaes","doi":"10.1112/jlms.13008","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to revisit propagation of chaos for a Langevin-type interacting particle system recently proposed as a method to sample probability measures. The interacting particle system we consider coincides, in the setting of a log-quadratic target distribution, with the ensemble Kalman sampler [SIAM J. Appl. Dyn. Syst. <b>19</b> (2020), no. 1, 412–441], for which propagation of chaos was first proved by Ding and Li in [SIAM J. Math. Anal. <b>53</b> (2021), no. 2, 1546–1578]. Like these authors, we prove propagation of chaos with an approach based on a synchronous coupling, as in Sznitman's classical argument. Instead of relying on a boostrapping argument, however, we use a technique based on stopping times in order to handle the presence of the empirical covariance in the coefficients of the dynamics. The use of stopping times to handle the lack of global Lipschitz continuity in the coefficients of stochastic dynamics originates from numerical analysis [SIAM J. Numer. Anal. <b>40</b> (2002), no. 3, 1041–1063] and was recently employed to prove mean-field limits for consensus-based optimization and related interacting particle systems [arXiv:2312.07373, 2023; Math. Models Methods Appl. Sci. <b>33</b> (2023), no. 2, 289–339]. In the context of ensemble Langevin sampling, this technique enables proving pathwise propagation of chaos with optimal rate, whereas previous results were optimal only up to a positive <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to revisit propagation of chaos for a Langevin-type interacting particle system recently proposed as a method to sample probability measures. The interacting particle system we consider coincides, in the setting of a log-quadratic target distribution, with the ensemble Kalman sampler [SIAM J. Appl. Dyn. Syst. 19 (2020), no. 1, 412–441], for which propagation of chaos was first proved by Ding and Li in [SIAM J. Math. Anal. 53 (2021), no. 2, 1546–1578]. Like these authors, we prove propagation of chaos with an approach based on a synchronous coupling, as in Sznitman's classical argument. Instead of relying on a boostrapping argument, however, we use a technique based on stopping times in order to handle the presence of the empirical covariance in the coefficients of the dynamics. The use of stopping times to handle the lack of global Lipschitz continuity in the coefficients of stochastic dynamics originates from numerical analysis [SIAM J. Numer. Anal. 40 (2002), no. 3, 1041–1063] and was recently employed to prove mean-field limits for consensus-based optimization and related interacting particle systems [arXiv:2312.07373, 2023; Math. Models Methods Appl. Sci. 33 (2023), no. 2, 289–339]. In the context of ensemble Langevin sampling, this technique enables proving pathwise propagation of chaos with optimal rate, whereas previous results were optimal only up to a positive ε $\varepsilon$ .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集合朗之文采样器的混沌急剧传播
本文的目的是重新探讨最近作为一种概率度量采样方法提出的朗格文型相互作用粒子系统的混沌传播。我们所考虑的交互粒子系统在对数二次目标分布的背景下与集合卡尔曼采样器[SIAM J. Appl.与这些作者一样,我们也采用了基于同步耦合的方法来证明混沌的传播,就像 Sznitman 的经典论证一样。不过,我们并不依赖于助推论证,而是使用了一种基于停止时间的技术,以处理动力学系数中存在的经验协方差。利用停止时间处理随机动力学系数缺乏全局 Lipschitz 连续性的问题源自数值分析 [SIAM J. Numer. Anal.33 (2023),第 2 期,289-339]。在集合朗之文采样的背景下,这种技术能够以最优速率证明混沌的路径传播,而之前的结果只有到正ε $\varepsilon$ 时才是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1