{"title":"Sharp propagation of chaos for the ensemble Langevin sampler","authors":"U. Vaes","doi":"10.1112/jlms.13008","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to revisit propagation of chaos for a Langevin-type interacting particle system recently proposed as a method to sample probability measures. The interacting particle system we consider coincides, in the setting of a log-quadratic target distribution, with the ensemble Kalman sampler [SIAM J. Appl. Dyn. Syst. <b>19</b> (2020), no. 1, 412–441], for which propagation of chaos was first proved by Ding and Li in [SIAM J. Math. Anal. <b>53</b> (2021), no. 2, 1546–1578]. Like these authors, we prove propagation of chaos with an approach based on a synchronous coupling, as in Sznitman's classical argument. Instead of relying on a boostrapping argument, however, we use a technique based on stopping times in order to handle the presence of the empirical covariance in the coefficients of the dynamics. The use of stopping times to handle the lack of global Lipschitz continuity in the coefficients of stochastic dynamics originates from numerical analysis [SIAM J. Numer. Anal. <b>40</b> (2002), no. 3, 1041–1063] and was recently employed to prove mean-field limits for consensus-based optimization and related interacting particle systems [arXiv:2312.07373, 2023; Math. Models Methods Appl. Sci. <b>33</b> (2023), no. 2, 289–339]. In the context of ensemble Langevin sampling, this technique enables proving pathwise propagation of chaos with optimal rate, whereas previous results were optimal only up to a positive <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to revisit propagation of chaos for a Langevin-type interacting particle system recently proposed as a method to sample probability measures. The interacting particle system we consider coincides, in the setting of a log-quadratic target distribution, with the ensemble Kalman sampler [SIAM J. Appl. Dyn. Syst. 19 (2020), no. 1, 412–441], for which propagation of chaos was first proved by Ding and Li in [SIAM J. Math. Anal. 53 (2021), no. 2, 1546–1578]. Like these authors, we prove propagation of chaos with an approach based on a synchronous coupling, as in Sznitman's classical argument. Instead of relying on a boostrapping argument, however, we use a technique based on stopping times in order to handle the presence of the empirical covariance in the coefficients of the dynamics. The use of stopping times to handle the lack of global Lipschitz continuity in the coefficients of stochastic dynamics originates from numerical analysis [SIAM J. Numer. Anal. 40 (2002), no. 3, 1041–1063] and was recently employed to prove mean-field limits for consensus-based optimization and related interacting particle systems [arXiv:2312.07373, 2023; Math. Models Methods Appl. Sci. 33 (2023), no. 2, 289–339]. In the context of ensemble Langevin sampling, this technique enables proving pathwise propagation of chaos with optimal rate, whereas previous results were optimal only up to a positive .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.