{"title":"Leguminous ferritin, a natural protein for iron supplementation, Pickering emulsion formation and encapsulation of bioactive molecules","authors":"Jiayi Hang, Yifu Chu, Lingyun Chen","doi":"10.1002/aocs.12869","DOIUrl":null,"url":null,"abstract":"<p>Ferritin is a naturally occurring iron storage protein. Leguminous ferritins exhibit unique structural features, including diverse subunit composition and an extension peptide, which contribute to superior thermal stability compared to animal ferritins. The high iron content, remarkable effectiveness, low risk of oxidative damage and thermal stability make the leguminous ferritin an attractive candidate for iron supplementation. Moreover, apoferritin is an excellent nanosized carrier for encapsulating bioactive compounds due to its inherent inner cavity, water solubility, biocompatibility, and reversible self-assembly behavior. However, the harsh condition during encapsulation by unmodified ferritins may cause damage to sensitive bioactive compounds. Thus, different processing methods are employed to alter the leguminous ferritin structures, including chemical, enzymatic, mild heat treatments, and nonthermal processing to achieve gentler encapsulation conditions for a wide range of bioactive compounds. Another challenge is to improve the stability of leguminous ferritin to withstand gastric digestion. The degradation of ferritin by proteases may lead to premature release of bioactive compounds. Recent works demonstrated that certain phenolic compounds such as proanthocyanidin-induced protein association, thereby enhancing digestive stability of ferritins, leading to a sustained release and a potentially greater bioavailability of bioactive compounds. Leguminous ferritin also has the potential to serve as a stabilizer for the Pickering emulsion, where the hydrophilic and hydrophobic compounds can be encapsulated in the ferritin nanocages and oil phase, respectively. The release and absorption of bioactive compounds in encapsulates and emulsions will need to be further demonstrated through in vivo studies.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12869","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12869","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Ferritin is a naturally occurring iron storage protein. Leguminous ferritins exhibit unique structural features, including diverse subunit composition and an extension peptide, which contribute to superior thermal stability compared to animal ferritins. The high iron content, remarkable effectiveness, low risk of oxidative damage and thermal stability make the leguminous ferritin an attractive candidate for iron supplementation. Moreover, apoferritin is an excellent nanosized carrier for encapsulating bioactive compounds due to its inherent inner cavity, water solubility, biocompatibility, and reversible self-assembly behavior. However, the harsh condition during encapsulation by unmodified ferritins may cause damage to sensitive bioactive compounds. Thus, different processing methods are employed to alter the leguminous ferritin structures, including chemical, enzymatic, mild heat treatments, and nonthermal processing to achieve gentler encapsulation conditions for a wide range of bioactive compounds. Another challenge is to improve the stability of leguminous ferritin to withstand gastric digestion. The degradation of ferritin by proteases may lead to premature release of bioactive compounds. Recent works demonstrated that certain phenolic compounds such as proanthocyanidin-induced protein association, thereby enhancing digestive stability of ferritins, leading to a sustained release and a potentially greater bioavailability of bioactive compounds. Leguminous ferritin also has the potential to serve as a stabilizer for the Pickering emulsion, where the hydrophilic and hydrophobic compounds can be encapsulated in the ferritin nanocages and oil phase, respectively. The release and absorption of bioactive compounds in encapsulates and emulsions will need to be further demonstrated through in vivo studies.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.