Integrating Pt–Co Nanoalloy and Sulfur-Doped Co–N–C to Construct Oxygen Reduction Reaction Catalysts for Proton Exchange Membrane Fuel Cells

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-10-01 DOI:10.1021/acsanm.4c0470510.1021/acsanm.4c04705
Fuquan Niu, Luyan Wang, Wenfeng Liu, Zhenpu Shi, Yange Yang, Yuantao Cui, Shuting Yang* and Yanhong Yin*, 
{"title":"Integrating Pt–Co Nanoalloy and Sulfur-Doped Co–N–C to Construct Oxygen Reduction Reaction Catalysts for Proton Exchange Membrane Fuel Cells","authors":"Fuquan Niu,&nbsp;Luyan Wang,&nbsp;Wenfeng Liu,&nbsp;Zhenpu Shi,&nbsp;Yange Yang,&nbsp;Yuantao Cui,&nbsp;Shuting Yang* and Yanhong Yin*,&nbsp;","doi":"10.1021/acsanm.4c0470510.1021/acsanm.4c04705","DOIUrl":null,"url":null,"abstract":"<p >Achieving high catalytic activity and stability with low platinum loading is vital for reducing the cost of proton exchange membrane fuel cells (PEMFCs) and enabling their large-scale commercialization. Herein, a three-dimensional (3D) nitrogen sulfur codoped carbon nanocomposite support embedded with Co nanoparticles derived from sulfur-doped zeolite imidazolate frameworks-67 was synthesized. After Pt nanoparticles are loaded, it can act as an excellent ORR catalyst (3D LPCNSC) for hydrogen–oxygen fuel cells. The existing metal Co are beneficial for catalyzing the growth of carbon nanotubes, generating CoN<sub><i>x</i></sub> structures, and partially forming Pt–Co nanoalloys. Nitrogen sulfur codoping can enhance metal–support interactions between Pt/Pt–Co and sulfur-doped Co–N–C by regulating the interfacial charge transfer. The 3D conductive network constructed using graphene oxide and carbon nanotubes contributes to enhanced electron and mass transfer. As a result, the 3D LPCNSC catalyst with a relatively lower Pt loading (13.65%) exhibits a superior half-potential, higher mass activity, and superb stability in comparison to commercial Pt/C (20%). A membrane electrode assembly assembled with this catalyst achieves a peak power density of 983.8 mW cm<sup>–2</sup> in a hydrogen–oxygen single cell. This work highlights a promising avenue for the structure and component design of low platinum nanocatalyst for PEMFCs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04705","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high catalytic activity and stability with low platinum loading is vital for reducing the cost of proton exchange membrane fuel cells (PEMFCs) and enabling their large-scale commercialization. Herein, a three-dimensional (3D) nitrogen sulfur codoped carbon nanocomposite support embedded with Co nanoparticles derived from sulfur-doped zeolite imidazolate frameworks-67 was synthesized. After Pt nanoparticles are loaded, it can act as an excellent ORR catalyst (3D LPCNSC) for hydrogen–oxygen fuel cells. The existing metal Co are beneficial for catalyzing the growth of carbon nanotubes, generating CoNx structures, and partially forming Pt–Co nanoalloys. Nitrogen sulfur codoping can enhance metal–support interactions between Pt/Pt–Co and sulfur-doped Co–N–C by regulating the interfacial charge transfer. The 3D conductive network constructed using graphene oxide and carbon nanotubes contributes to enhanced electron and mass transfer. As a result, the 3D LPCNSC catalyst with a relatively lower Pt loading (13.65%) exhibits a superior half-potential, higher mass activity, and superb stability in comparison to commercial Pt/C (20%). A membrane electrode assembly assembled with this catalyst achieves a peak power density of 983.8 mW cm–2 in a hydrogen–oxygen single cell. This work highlights a promising avenue for the structure and component design of low platinum nanocatalyst for PEMFCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合铂钴纳米合金和掺硫 Co-N-C 构建质子交换膜燃料电池的氧还原反应催化剂
要降低质子交换膜燃料电池(PEMFC)的成本并使其大规模商业化,就必须在低铂负载的情况下实现高催化活性和稳定性。在此,我们合成了一种三维(3D)氮硫共掺碳纳米复合支撑物,其中嵌入了从硫掺杂沸石咪唑啉框架-67中提取的钴纳米颗粒。负载铂纳米颗粒后,它可以作为氢氧燃料电池的一种优异的 ORR 催化剂(三维 LPCNSC)。现有的金属 Co 有利于催化碳纳米管的生长、生成 CoNx 结构以及部分形成 Pt-Co 纳米合金。氮硫共掺可通过调节界面电荷转移,增强 Pt/Pt-Co 和掺硫 Co-N-C 之间的金属支撑相互作用。使用氧化石墨烯和碳纳米管构建的三维导电网络有助于增强电子和质量传输。因此,与商用铂/钴(20%)相比,铂负载量相对较低(13.65%)的三维 LPCNSC 催化剂具有更优越的半电位、更高的质量活性和超强的稳定性。使用这种催化剂组装的膜电极组件在氢氧单电池中达到了 983.8 mW cm-2 的峰值功率密度。这项工作为用于 PEMFC 的低铂纳米催化剂的结构和组件设计开辟了一条前景广阔的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Integration of NiTiO3 Films onto TiO2 Nanorods as Photoanodes for Glucose Detection with Near-Infrared Light The Role of Iodide in the Formation of Gold Nanotriangles Rh Nanoparticles Encaged in Hollow Porous Silica Nanospheres as Catalysts for Toluene Hydrogenation under Mild Reaction Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1