ADA-SCMS Net: A self-supervised clustering-based 3D mesh segmentation network with aggregation dual autoencoder

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2024-10-11 DOI:10.1016/j.cag.2024.104100
Xue Jiao , Xiaohui Yang
{"title":"ADA-SCMS Net: A self-supervised clustering-based 3D mesh segmentation network with aggregation dual autoencoder","authors":"Xue Jiao ,&nbsp;Xiaohui Yang","doi":"10.1016/j.cag.2024.104100","DOIUrl":null,"url":null,"abstract":"<div><div>Despite significant advances in 3D mesh segmentation techniques driven by deep learning, segmenting 3D meshes without exhaustive manual labeling remains a challenging due to difficulties in acquiring high-quality labeled datasets. This paper introduces an <strong>a</strong>ggregation <strong>d</strong>ual <strong>a</strong>utoencoder <strong>s</strong>elf-supervised <strong>c</strong>lustering-based <strong>m</strong>esh <strong>s</strong>egmentation network for unlabeled 3D meshes (ADA-SCMS Net). Expanding upon the previously proposed SCMS-Net, the ADA-SCMS Net enhances the segmentation process by incorporating a denoising autoencoder with an improved graph autoencoder as its basic structure. This modification prompts the segmentation network to concentrate on the primary structure of the input data during training, enabling the capture of robust features. In addition, the ADA-SCMS network introduces two new modules. One module is named the branch aggregation module, which combines the strengths of two branches to create a semantic latent representation. The other is the aggregation self-supervised clustering module, which facilitates end-to-end clustering training by iteratively updating each branch through mutual supervision. Extensive experiments on benchmark datasets validate the effectiveness of the ADA-SCMS network, demonstrating superior segmentation performance compared to the SCMS network.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104100"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002358","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant advances in 3D mesh segmentation techniques driven by deep learning, segmenting 3D meshes without exhaustive manual labeling remains a challenging due to difficulties in acquiring high-quality labeled datasets. This paper introduces an aggregation dual autoencoder self-supervised clustering-based mesh segmentation network for unlabeled 3D meshes (ADA-SCMS Net). Expanding upon the previously proposed SCMS-Net, the ADA-SCMS Net enhances the segmentation process by incorporating a denoising autoencoder with an improved graph autoencoder as its basic structure. This modification prompts the segmentation network to concentrate on the primary structure of the input data during training, enabling the capture of robust features. In addition, the ADA-SCMS network introduces two new modules. One module is named the branch aggregation module, which combines the strengths of two branches to create a semantic latent representation. The other is the aggregation self-supervised clustering module, which facilitates end-to-end clustering training by iteratively updating each branch through mutual supervision. Extensive experiments on benchmark datasets validate the effectiveness of the ADA-SCMS network, demonstrating superior segmentation performance compared to the SCMS network.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADA-SCMS 网络:基于自监督聚类的三维网状分割网络与聚合双自动编码器
尽管深度学习驱动的三维网格分割技术取得了长足进步,但由于难以获得高质量的标记数据集,在不进行详尽人工标记的情况下分割三维网格仍然是一项挑战。本文介绍了一种基于聚合双自动编码器自监督聚类的三维网格分割网络(ADA-SCMS Net)。ADA-SCMS Net 以之前提出的 SCMS-Net 为基础,通过将去噪自动编码器与改进的图自动编码器作为其基本结构,增强了分割过程。这一修改促使分割网络在训练过程中专注于输入数据的主要结构,从而捕捉到稳健的特征。此外,ADA-SCMS 网络还引入了两个新模块。一个模块被命名为分支聚合模块,它结合了两个分支的优势来创建语义潜表征。另一个是聚合自监督聚类模块,它通过相互监督迭代更新每个分支来促进端到端的聚类训练。在基准数据集上进行的大量实验验证了 ADA-SCMS 网络的有效性,与 SCMS 网络相比,ADA-SCMS 网络具有更出色的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
Enhancing Visual Analytics systems with guidance: A task-driven methodology Learning geometric complexes for 3D shape classification RenalViz: Visual analysis of cohorts with chronic kidney disease Enhancing semantic mapping in text-to-image diffusion via Gather-and-Bind CGLight: An effective indoor illumination estimation method based on improved convmixer and GauGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1