Yasmine Eid Mahmoud Yousef , Ayman El-Kilany , Farid Ali , Yassin M. Nissan , Ehab E. Hassanein
{"title":"Deep Learning-Assisted Compound Bioactivity Estimation Framework","authors":"Yasmine Eid Mahmoud Yousef , Ayman El-Kilany , Farid Ali , Yassin M. Nissan , Ehab E. Hassanein","doi":"10.1016/j.eij.2024.100558","DOIUrl":null,"url":null,"abstract":"<div><div>Drug Discovery is a highly complicated process. On average, it takes six to twelve years to manufacture a new drug and have the product released in the market. It is of utmost importance to find methods that would accelerate the manufacturing process. This significant challenge in drug development can be addressed using deep learning techniques. The aim of this paper is to propose a deep learning-based framework that can help chemists examine compound biological activity in a more accurate manner. The proposed framework employs autoencoder for data representation of the compounds data, which is then classified using deep neural network followed by building a customized deep regression model to estimate an accurate value of the compound bioactivity. The proposed framework achieved an accuracy of 89% in autoencoder reconstruction error, 79.01% in classification, and MAE of 2.4 while predicting compound bioactivity using deep regression model.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S111086652400121X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Drug Discovery is a highly complicated process. On average, it takes six to twelve years to manufacture a new drug and have the product released in the market. It is of utmost importance to find methods that would accelerate the manufacturing process. This significant challenge in drug development can be addressed using deep learning techniques. The aim of this paper is to propose a deep learning-based framework that can help chemists examine compound biological activity in a more accurate manner. The proposed framework employs autoencoder for data representation of the compounds data, which is then classified using deep neural network followed by building a customized deep regression model to estimate an accurate value of the compound bioactivity. The proposed framework achieved an accuracy of 89% in autoencoder reconstruction error, 79.01% in classification, and MAE of 2.4 while predicting compound bioactivity using deep regression model.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.