Chad S. Boyd , Megan K. Creutzburg , Alexander V. Kumar , Joseph T. Smith , Kevin E. Doherty , Brian A. Mealor , John B. Bradford , Matthew Cahill , Stella M. Copeland , Cameron A. Duquette , Lindy Garner , Martin C. Holdrege , Bill Sparklin , Todd B. Cross
{"title":"A Strategic and Science-Based Framework for Management of Invasive Annual Grasses in the Sagebrush Biome","authors":"Chad S. Boyd , Megan K. Creutzburg , Alexander V. Kumar , Joseph T. Smith , Kevin E. Doherty , Brian A. Mealor , John B. Bradford , Matthew Cahill , Stella M. Copeland , Cameron A. Duquette , Lindy Garner , Martin C. Holdrege , Bill Sparklin , Todd B. Cross","doi":"10.1016/j.rama.2024.08.019","DOIUrl":null,"url":null,"abstract":"<div><div>In the last 20 years, the North American sagebrush biome has lost over 500 000 ha of intact and largely intact sagebrush plant communities on an annual basis. Much of this loss has been associated with expansion and infilling of invasive annual grasses (IAGs). These species are highly competitive against native perennial grasses in disturbed environments, and create fuel conditions that increase both the likelihood of fire ignition and the ease of wildfire spread across large landscapes. Given the current rate of IAG expansion in both burned and unburned rangelands, we propose a range-wide paradigm shift from opportunistic and reactive management, to a framework that spatially prioritizes maintenance of largely intact, uninvaded areas and improvement of invaded habitats in strategic locations. We created a framework accompanied by biome-wide priority maps using geospatial overlays that target areas to <strong>MAINTAIN</strong> large, uninvaded areas as natural resource anchors through activities to prevent IAGs, <strong>IMPROVE</strong> areas where management success in restoring large, intact landscapes is most likely, and <strong>CONTAIN</strong> IAG infestations where necessary. We then offer three case studies to illustrate the use of these concepts and map products at multiple scales. Our map products operate at the biome scale using regional data sources and additional data sources will be needed to inform local conservation planning. However, the basic strategic management principles of (1) maintaining the intact and uninvaded areas that we can least afford to lose to IAGs, (2) improving areas where we have a reasonable likelihood of restoration success, and (3) containing problems where we must, are timely, relevant, and scalable from the biome to local levels.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangeland Ecology & Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1550742424001246","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the last 20 years, the North American sagebrush biome has lost over 500 000 ha of intact and largely intact sagebrush plant communities on an annual basis. Much of this loss has been associated with expansion and infilling of invasive annual grasses (IAGs). These species are highly competitive against native perennial grasses in disturbed environments, and create fuel conditions that increase both the likelihood of fire ignition and the ease of wildfire spread across large landscapes. Given the current rate of IAG expansion in both burned and unburned rangelands, we propose a range-wide paradigm shift from opportunistic and reactive management, to a framework that spatially prioritizes maintenance of largely intact, uninvaded areas and improvement of invaded habitats in strategic locations. We created a framework accompanied by biome-wide priority maps using geospatial overlays that target areas to MAINTAIN large, uninvaded areas as natural resource anchors through activities to prevent IAGs, IMPROVE areas where management success in restoring large, intact landscapes is most likely, and CONTAIN IAG infestations where necessary. We then offer three case studies to illustrate the use of these concepts and map products at multiple scales. Our map products operate at the biome scale using regional data sources and additional data sources will be needed to inform local conservation planning. However, the basic strategic management principles of (1) maintaining the intact and uninvaded areas that we can least afford to lose to IAGs, (2) improving areas where we have a reasonable likelihood of restoration success, and (3) containing problems where we must, are timely, relevant, and scalable from the biome to local levels.
期刊介绍:
Rangeland Ecology & Management publishes all topics-including ecology, management, socioeconomic and policy-pertaining to global rangelands. The journal''s mission is to inform academics, ecosystem managers and policy makers of science-based information to promote sound rangeland stewardship. Author submissions are published in five manuscript categories: original research papers, high-profile forum topics, concept syntheses, as well as research and technical notes.
Rangelands represent approximately 50% of the Earth''s land area and provision multiple ecosystem services for large human populations. This expansive and diverse land area functions as coupled human-ecological systems. Knowledge of both social and biophysical system components and their interactions represent the foundation for informed rangeland stewardship. Rangeland Ecology & Management uniquely integrates information from multiple system components to address current and pending challenges confronting global rangelands.