A dataset of color fundus images for the detection and classification of eye diseases

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2024-10-04 DOI:10.1016/j.dib.2024.110979
Shayla Sharmin , Mohammad Riadur Rashid , Tania Khatun , Md Zahid Hasan , Mohammad Shorif Uddin , Marzia
{"title":"A dataset of color fundus images for the detection and classification of eye diseases","authors":"Shayla Sharmin ,&nbsp;Mohammad Riadur Rashid ,&nbsp;Tania Khatun ,&nbsp;Md Zahid Hasan ,&nbsp;Mohammad Shorif Uddin ,&nbsp;Marzia","doi":"10.1016/j.dib.2024.110979","DOIUrl":null,"url":null,"abstract":"<div><div>The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindness if not detected and treated early. Therefore, automated systems using machine learning and computer vision techniques have shown promise in the early detection and management of these diseases, reducing the risk of vision loss. In this context, to facilitate the development and evaluation of machine learning models for eye disease detection, we introduced a comprehensive dataset which was collected during a span of eight months from Anawara Hamida Eye Hospital &amp; B.N.S.B. Zahurul Haque Eye Hospital using Color Fundus Photography machine. The dataset has two categories of data: color fundus photographs and anterior segment images. The color fundus photographs categorized into nine classes: Diabetic Retinopathy, Glaucoma, Macular Scar, Optic Disc Edema, Central Serous Chorioretinopathy (CSCR), Retinal Detachment, Retinitis Pigmentosa, Myopia, Healthy and anterior segment images has one class: Pterygium. This dataset comprises 5335 primary images. By providing a rich and diverse collection of color fundus photographs, this dataset serves as a valuable resource for researchers and clinicians in the field of ophthalmology for the automatic detection of nine different classes of eye diseases.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924009417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindness if not detected and treated early. Therefore, automated systems using machine learning and computer vision techniques have shown promise in the early detection and management of these diseases, reducing the risk of vision loss. In this context, to facilitate the development and evaluation of machine learning models for eye disease detection, we introduced a comprehensive dataset which was collected during a span of eight months from Anawara Hamida Eye Hospital & B.N.S.B. Zahurul Haque Eye Hospital using Color Fundus Photography machine. The dataset has two categories of data: color fundus photographs and anterior segment images. The color fundus photographs categorized into nine classes: Diabetic Retinopathy, Glaucoma, Macular Scar, Optic Disc Edema, Central Serous Chorioretinopathy (CSCR), Retinal Detachment, Retinitis Pigmentosa, Myopia, Healthy and anterior segment images has one class: Pterygium. This dataset comprises 5335 primary images. By providing a rich and diverse collection of color fundus photographs, this dataset serves as a valuable resource for researchers and clinicians in the field of ophthalmology for the automatic detection of nine different classes of eye diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于检测和分类眼疾的彩色眼底图像数据集
视网膜是眼睛的重要组成部分,负责捕捉视觉信息,因此视网膜健康对清晰视力至关重要。各种眼部疾病,如老年性黄斑变性、糖尿病视网膜病变和青光眼,如果不及早发现和治疗,会严重损害视力,甚至导致失明。因此,采用机器学习和计算机视觉技术的自动化系统在早期检测和管理这些疾病、降低视力丧失风险方面大有可为。在此背景下,为了促进眼科疾病检测机器学习模型的开发和评估,我们引入了一个综合数据集,该数据集是在八个月的时间里从 Anawara Hamida 眼科医院& B.N.S.B. Zahurul Haque 眼科医院使用彩色眼底摄影机收集的。数据集包括两类数据:彩色眼底照片和前段图像。彩色眼底照片分为九类:糖尿病视网膜病变、青光眼、黄斑疤痕、视盘水肿、中心性浆液性脉络膜视网膜病变(CSCR)、视网膜脱离、视网膜色素变性、近视、健康,前段图像分为一类:翼状胬肉该数据集包含 5335 张原始图像。该数据集提供了丰富多样的彩色眼底照片,为眼科领域的研究人员和临床医生自动检测九类不同的眼部疾病提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Dataset of dendrometer and environmental parameter measurements of two different species of the group of genera known as eucalypts in South Africa and Portugal Bulk mRNA-sequencing data of the estrogen and androgen responses in the human prostate cancer cell line VCaP A refined spirometry dataset for comparing segmented (piecewise) linear models to that of GAMLSS Shotgun metagenomics sequencing data of root microbial community of Huanglongbing-infected Citrus nobilis BEEHIVE: A dataset of Apis mellifera images to empower honeybee monitoring research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1