Calculation of in-situ steady-state heat flux on EAST lower divertor

IF 2.3 2区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Materials and Energy Pub Date : 2024-10-10 DOI:10.1016/j.nme.2024.101763
Chunyu He , Dahuan Zhu , Baoguo Wang , Binfu Gao , Gaoting Chen , Lingyi Meng , Rong Yan , Yang Wang , Yongqi Gu , Guoliang Xu , Qingquan Yang , Rui Ding , Junling Chen , EAST Team
{"title":"Calculation of in-situ steady-state heat flux on EAST lower divertor","authors":"Chunyu He ,&nbsp;Dahuan Zhu ,&nbsp;Baoguo Wang ,&nbsp;Binfu Gao ,&nbsp;Gaoting Chen ,&nbsp;Lingyi Meng ,&nbsp;Rong Yan ,&nbsp;Yang Wang ,&nbsp;Yongqi Gu ,&nbsp;Guoliang Xu ,&nbsp;Qingquan Yang ,&nbsp;Rui Ding ,&nbsp;Junling Chen ,&nbsp;EAST Team","doi":"10.1016/j.nme.2024.101763","DOIUrl":null,"url":null,"abstract":"<div><div>Heat flux is a key issue in tokamak devices. The non-uniform high heat flux on Plasma-Facing Components (PFCs) has led to local severe damage, including cracks and melting, in current tokamaks such as EAST and WEST. To characterize the non-uniform heat flux loading on the divertor surfaces, the parallel incident heat flux <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mo>‖</mo></mrow></msub><mo>,</mo></mrow></math></span> the decay length <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> along the radial direction and the Gaussian spreading width S are used. The <span><math><mrow><msub><mi>q</mi><mo>‖</mo></msub></mrow></math></span> can lead to a very high peak heat flux loading on the divertor surfaces, which may cause critical heat flux problems. Additionally, the decay length is a key consideration for future tokamak designs like ITER. Every effort on the present tokamak devices contributes to updating the scaling of the heat flux. In EAST, a calculation method based on a high spatial resolution IR camera is employed to obtain the heat flux and decay length. The main process involves comparing the surface temperature distribution calculated by Fluent simulation with that measured by an infrared camera. Taking a high heating source discharge (#123059 ∼ 10 MW heating source) as an example, the heat flux is as follows: <span><math><mrow><msub><mi>q</mi><mo>‖</mo></msub><mo>=</mo><msubsup><mrow><mn>216</mn><mspace></mspace></mrow><mrow><mo>-</mo><mn>14</mn></mrow><mrow><mo>+</mo><mn>19</mn></mrow></msubsup></mrow></math></span> MW/m<sup>2</sup>, with <span><math><mrow><msub><mi>λ</mi><mi>q</mi></msub><mo>=</mo><msubsup><mrow><mn>6.2</mn><mspace></mspace></mrow><mrow><mo>-</mo><mn>1.1</mn></mrow><mrow><mo>+</mo><mn>1</mn></mrow></msubsup></mrow></math></span> mm, and <span><math><mrow><mi>S</mi><mo>=</mo><mn>1.2</mn><mo>±</mo><mn>0.4</mn></mrow></math></span> mm; it is in line with Langmuir probe data. The infrared-based heat flux calculation method can calculate the peak incident heat flux and the decay length simultaneously, its result can help to update the scaling model of heat flux, thus not only helping to improve the present device but also offering important reference for future tokamaks.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101763"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124001868","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heat flux is a key issue in tokamak devices. The non-uniform high heat flux on Plasma-Facing Components (PFCs) has led to local severe damage, including cracks and melting, in current tokamaks such as EAST and WEST. To characterize the non-uniform heat flux loading on the divertor surfaces, the parallel incident heat flux q, the decay length λq along the radial direction and the Gaussian spreading width S are used. The q can lead to a very high peak heat flux loading on the divertor surfaces, which may cause critical heat flux problems. Additionally, the decay length is a key consideration for future tokamak designs like ITER. Every effort on the present tokamak devices contributes to updating the scaling of the heat flux. In EAST, a calculation method based on a high spatial resolution IR camera is employed to obtain the heat flux and decay length. The main process involves comparing the surface temperature distribution calculated by Fluent simulation with that measured by an infrared camera. Taking a high heating source discharge (#123059 ∼ 10 MW heating source) as an example, the heat flux is as follows: q=216-14+19 MW/m2, with λq=6.2-1.1+1 mm, and S=1.2±0.4 mm; it is in line with Langmuir probe data. The infrared-based heat flux calculation method can calculate the peak incident heat flux and the decay length simultaneously, its result can help to update the scaling model of heat flux, thus not only helping to improve the present device but also offering important reference for future tokamaks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算 EAST 下部分流器的就地稳态热通量
热通量是托卡马克设备的一个关键问题。等离子体面部件(PFC)上不均匀的高热通量已导致目前的托卡马克(如 EAST 和 WEST)出现局部严重损坏,包括裂缝和熔化。为了描述分流器表面的非均匀热通量负荷,使用了平行入射热通量 q‖、沿径向的衰减长度 λq 和高斯扩散宽度 S。q "可能会导致分流器表面的峰值热通量负荷过高,从而引发临界热通量问题。此外,衰变长度也是未来托卡马克设计(如热核实验堆)的一个关键考虑因素。目前在托卡马克装置上所做的一切努力都有助于更新热通量的比例。在 EAST 中,采用了一种基于高空间分辨率红外摄像机的计算方法来获取热通量和衰变长度。主要过程包括将 Fluent 仿真计算的表面温度分布与红外相机测量的温度分布进行比较。以高加热源放电(#123059 ∼ 10 MW 加热源)为例,热通量如下:q‖=216-14+19 MW/m2,λq=6.2-1.1+1 mm,S=1.2±0.4 mm;与 Langmuir 探头数据一致。基于红外的热通量计算方法可以同时计算入射热通量峰值和衰变长度,其结果有助于更新热通量的缩放模型,不仅有助于改进现有装置,也为未来的托卡马克提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Materials and Energy
Nuclear Materials and Energy Materials Science-Materials Science (miscellaneous)
CiteScore
3.70
自引率
15.40%
发文量
175
审稿时长
20 weeks
期刊介绍: The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.
期刊最新文献
Post-mortem analysis of material deposition and fuel retention on the plasma-facing materials after the 2021 campaign in EAST Effective control of intrinsic impurities using n = 1 resonant magnetic perturbation (RMP) in EAST H-mode plasma SOLEDGE3X integrated core-edge modelling of tungsten sources, migration, and radiation in WEST plasmas HEAT simulation and IR data comparison for ST40 plasma-facing components Modelling of particle-reflection-distributions of rough surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1