Shao Siyu, Cui Li, Wang Danqi, Lu Juan, Qiu Fan, Bao Jia, Song Xiaoxiong
{"title":"Effects of Hydraulic Residence Time, NO3− and NO2− on Sulfate-Reducing Anaerobic Ammonium Oxidation Reaction","authors":"Shao Siyu, Cui Li, Wang Danqi, Lu Juan, Qiu Fan, Bao Jia, Song Xiaoxiong","doi":"10.1007/s11270-024-07566-8","DOIUrl":null,"url":null,"abstract":"<div><p>The sulfate-reducing anaerobic ammonia oxidation (SRAO) reaction, as a biochemical reaction, is influenced by many factors. Different factors have different removal effects and change the acting bacterial species. In this experiment, we investigated the effects of hydraulic residence time (HRT), organic matter concentration, NO<sub>3</sub><sup>−</sup>, NO<sub>2</sub><sup>−</sup> and N/S on the SRAO reaction. The influent ammonia and sulfate concentrations were maintained at about 120 mg/L and 250 mg/L, respectively, during the experiment. The highest removal rates of 98.5% and 52.4% were achieved at HRT of 48 h. When HRT was 24 h, the removal rates of both decreased, but the highest removal loads of 0.092 kgN/m<sup>3</sup>·d and 0.168 kgS/m<sup>3</sup>·d were achieved, respectively. As the concentration of influent organic matter increased, the activity of SRAO strains decreased and the sulfate removal rate increased, suggesting that the functional bacteria strains were gradually transformed into desulfurizing bacteria. Small additions of NO<sub>3</sub><sup>−</sup> (30 mg/L) and NO<sub>2</sub><sup>−</sup> (40 mg/L) during the experimental process could promote the reaction, but too high a concentration would affect the removal of ammonia nitrogen and sulfate. In the SRAO system, controlling the concentration of influent substrate (in the case of low concentration) and N/S in the influent water (N/S = 2) can improve the efficiency of the interconversion of nitrogen and sulfur and reduce the generation of other by-products.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07566-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The sulfate-reducing anaerobic ammonia oxidation (SRAO) reaction, as a biochemical reaction, is influenced by many factors. Different factors have different removal effects and change the acting bacterial species. In this experiment, we investigated the effects of hydraulic residence time (HRT), organic matter concentration, NO3−, NO2− and N/S on the SRAO reaction. The influent ammonia and sulfate concentrations were maintained at about 120 mg/L and 250 mg/L, respectively, during the experiment. The highest removal rates of 98.5% and 52.4% were achieved at HRT of 48 h. When HRT was 24 h, the removal rates of both decreased, but the highest removal loads of 0.092 kgN/m3·d and 0.168 kgS/m3·d were achieved, respectively. As the concentration of influent organic matter increased, the activity of SRAO strains decreased and the sulfate removal rate increased, suggesting that the functional bacteria strains were gradually transformed into desulfurizing bacteria. Small additions of NO3− (30 mg/L) and NO2− (40 mg/L) during the experimental process could promote the reaction, but too high a concentration would affect the removal of ammonia nitrogen and sulfate. In the SRAO system, controlling the concentration of influent substrate (in the case of low concentration) and N/S in the influent water (N/S = 2) can improve the efficiency of the interconversion of nitrogen and sulfur and reduce the generation of other by-products.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.