Jing Zhang, Futian Liu, Hang Ning, Yubo Xia, Zhuo Zhang, Wanjun Jiang, Sheming Chen, Dongli Ji
{"title":"Optimizing the estimation of water storage variation in lakes with limited satellite altimetry coverage","authors":"Jing Zhang, Futian Liu, Hang Ning, Yubo Xia, Zhuo Zhang, Wanjun Jiang, Sheming Chen, Dongli Ji","doi":"10.1007/s12665-024-11912-8","DOIUrl":null,"url":null,"abstract":"<div><p>The empirical formula (EF) method, which do not rely on topographic data, stands as the prevailing technique for estimating lake water storage variation (LWSV). However, for smaller lakes, the sporadic monitoring frequency of satellite altimetry fails to adequately support this method, presenting a challenge in accurately gauging LWSV. Using Lake Chahannur, a lake in China with an area smaller than 50 km<sup>2</sup>, as a case study, seven schemes based on the EF method and the Area-Volume-Height (A-V-H) curve method were designed to estimate the LWSV of this undersized lake. The efficacy and precision of each scheme were evaluated against field-measured elevations. Findings reveal that due to the limited satellite altimetry monitoring, both the EF method and the H-driven A-V-H curve schemes struggle to provide consistent and comprehensive estimations. In the A-driven A-V-H curve schemes, terrain data from SRTM DEM suffers from mask processing and substantial errors, with the former posing challenges for shrinking lakes and the latter significantly compromising estimation accuracy. While field-measured elevations boast high precision, the interpolation process leads to terrain maps lacking in detail, with site density becoming a crucial factor influencing the accuracy of LWSV estimation. The combination of terrain reconstruction and A-driven pattern emerges as the most promising, boasting high accuracy, rich detail, and significantly reduced reliance on satellite altimetry monitoring, making it particularly suitable for small lakes. Chahannur’s bottom elevation ranges between 1271.71 and 1273.44 m, and the lake shows a downward trend in water volume from 1991 to 2020, with fluctuations totaling approximately 35 million m<sup>3</sup>. This study serves as a vital addition to the field of LWSV estimation, potentially broadening the scope of estimation from large-scale lakes to a wider array of global surface water bodies.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 20","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11912-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The empirical formula (EF) method, which do not rely on topographic data, stands as the prevailing technique for estimating lake water storage variation (LWSV). However, for smaller lakes, the sporadic monitoring frequency of satellite altimetry fails to adequately support this method, presenting a challenge in accurately gauging LWSV. Using Lake Chahannur, a lake in China with an area smaller than 50 km2, as a case study, seven schemes based on the EF method and the Area-Volume-Height (A-V-H) curve method were designed to estimate the LWSV of this undersized lake. The efficacy and precision of each scheme were evaluated against field-measured elevations. Findings reveal that due to the limited satellite altimetry monitoring, both the EF method and the H-driven A-V-H curve schemes struggle to provide consistent and comprehensive estimations. In the A-driven A-V-H curve schemes, terrain data from SRTM DEM suffers from mask processing and substantial errors, with the former posing challenges for shrinking lakes and the latter significantly compromising estimation accuracy. While field-measured elevations boast high precision, the interpolation process leads to terrain maps lacking in detail, with site density becoming a crucial factor influencing the accuracy of LWSV estimation. The combination of terrain reconstruction and A-driven pattern emerges as the most promising, boasting high accuracy, rich detail, and significantly reduced reliance on satellite altimetry monitoring, making it particularly suitable for small lakes. Chahannur’s bottom elevation ranges between 1271.71 and 1273.44 m, and the lake shows a downward trend in water volume from 1991 to 2020, with fluctuations totaling approximately 35 million m3. This study serves as a vital addition to the field of LWSV estimation, potentially broadening the scope of estimation from large-scale lakes to a wider array of global surface water bodies.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.