{"title":"Muscle Mass and Glucagon-Like Peptide-1 Receptor Agonists: Adaptive or Maladaptive Response to Weight Loss?","authors":"Jennifer Linge,Andreas L Birkenfeld,Ian J Neeland","doi":"10.1161/circulationaha.124.067676","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that pharmacologic weight loss with glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and combination therapies is approaching magnitudes achieved with surgery. However, as more weight loss is achieved, there is concern for potential adverse effects on muscle quantity, composition, and function. This primer aims to address whether muscle-related changes associated with weight loss treatments such as GLP-1 RAs may be maladaptive (ie, adversely affecting muscle health or function), adaptive (ie, a physiologic response to weight loss maintaining or minimally affecting muscle health or function), or perhaps an enhanced response to weight loss (ie, improved muscle health or function after treatment). Based on contemporary evidence with the addition of studies using magnetic resonance imaging, skeletal muscle changes with GLP-1 RA treatments appear to be adaptive: changes in muscle volume z-score indicate a change in muscle volume that is commensurate with what is expected given aging, disease status, and weight loss achieved, and the improvement in insulin sensitivity and muscle fat infiltration likely contributes to an adaptive process with improved muscle quality, lowering the probability for loss in strength and function. Nevertheless, factors such as older age and prefrailty may influence the selection of appropriate candidates for these therapies because of risk for sarcopenia. Several pharmacologic treatments to maintain or improve muscle mass designed in combination with GLP-1-based therapies are under development. For future development of GLP-1-based therapies (and other therapies) designed for weight loss, as well as for patient-centered treatment optimization, the introduction of more objective and comprehensive ways of assessing muscle health (including accurate and meaningful assessments of muscle quantity, composition, function, mobility, and strength) is important for the substantial numbers of patients who will likely be taking these medications well into the future.","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"10 1","pages":"1288-1298"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circulationaha.124.067676","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have shown that pharmacologic weight loss with glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and combination therapies is approaching magnitudes achieved with surgery. However, as more weight loss is achieved, there is concern for potential adverse effects on muscle quantity, composition, and function. This primer aims to address whether muscle-related changes associated with weight loss treatments such as GLP-1 RAs may be maladaptive (ie, adversely affecting muscle health or function), adaptive (ie, a physiologic response to weight loss maintaining or minimally affecting muscle health or function), or perhaps an enhanced response to weight loss (ie, improved muscle health or function after treatment). Based on contemporary evidence with the addition of studies using magnetic resonance imaging, skeletal muscle changes with GLP-1 RA treatments appear to be adaptive: changes in muscle volume z-score indicate a change in muscle volume that is commensurate with what is expected given aging, disease status, and weight loss achieved, and the improvement in insulin sensitivity and muscle fat infiltration likely contributes to an adaptive process with improved muscle quality, lowering the probability for loss in strength and function. Nevertheless, factors such as older age and prefrailty may influence the selection of appropriate candidates for these therapies because of risk for sarcopenia. Several pharmacologic treatments to maintain or improve muscle mass designed in combination with GLP-1-based therapies are under development. For future development of GLP-1-based therapies (and other therapies) designed for weight loss, as well as for patient-centered treatment optimization, the introduction of more objective and comprehensive ways of assessing muscle health (including accurate and meaningful assessments of muscle quantity, composition, function, mobility, and strength) is important for the substantial numbers of patients who will likely be taking these medications well into the future.
期刊介绍:
Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.