Deep Optimized Broad Learning System for Applications in Tabular Data Recognition

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2024-10-15 DOI:10.1109/TCYB.2024.3473809
Wandong Zhang;Yimin Yang;Q. M. Jonathan Wu;Tianlong Liu
{"title":"Deep Optimized Broad Learning System for Applications in Tabular Data Recognition","authors":"Wandong Zhang;Yimin Yang;Q. M. Jonathan Wu;Tianlong Liu","doi":"10.1109/TCYB.2024.3473809","DOIUrl":null,"url":null,"abstract":"The broad learning system (BLS) is a versatile and effective tool for analyzing tabular data. However, the rapid expansion of big data has resulted in an overwhelming amount of tabular data, necessitating the development of specialized tools for effective management and analysis. This article introduces an optimized BLS (OBLS) specifically tailored for big data analysis. In addition, a deep-optimized BLS (DOBLS) network is developed further to enhance the performance and efficiency of the OBLS. The main contributions of this article are: 1) by retracing the network’s error from the output space to the latent space, the OBLS adjusts parameters in the feature and enhancement node layers. This process aims to achieve more resilient representations, resulting in improved performance; 2) the DOBLS is a multilayered structure consisting of multiple OBLSs, wherein each OBLS connects to the input and output layers, enabling direct data propagation. This design helps reduce information loss between layers, ensuring an efficient flow of information throughout the network; and 3) the proposed methods demonstrate robustness across various applications, including multiview feature embedding, one-class classification (OCC), camera model identification, electroencephalogram (EEG) signal processing, and radar signal analysis. Experimental results validate the effectiveness of the proposed models. To ensure reproducibility, the source code is available at \n<uri>https://github.com/1027051515/OBLS_DOBLS</uri>\n.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"54 12","pages":"7119-7132"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10717444/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The broad learning system (BLS) is a versatile and effective tool for analyzing tabular data. However, the rapid expansion of big data has resulted in an overwhelming amount of tabular data, necessitating the development of specialized tools for effective management and analysis. This article introduces an optimized BLS (OBLS) specifically tailored for big data analysis. In addition, a deep-optimized BLS (DOBLS) network is developed further to enhance the performance and efficiency of the OBLS. The main contributions of this article are: 1) by retracing the network’s error from the output space to the latent space, the OBLS adjusts parameters in the feature and enhancement node layers. This process aims to achieve more resilient representations, resulting in improved performance; 2) the DOBLS is a multilayered structure consisting of multiple OBLSs, wherein each OBLS connects to the input and output layers, enabling direct data propagation. This design helps reduce information loss between layers, ensuring an efficient flow of information throughout the network; and 3) the proposed methods demonstrate robustness across various applications, including multiview feature embedding, one-class classification (OCC), camera model identification, electroencephalogram (EEG) signal processing, and radar signal analysis. Experimental results validate the effectiveness of the proposed models. To ensure reproducibility, the source code is available at https://github.com/1027051515/OBLS_DOBLS .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于表格数据识别的深度优化广泛学习系统
广义学习系统(BLS)是分析表格数据的一种通用且有效的工具。然而,大数据的快速扩张导致了大量的表格数据,需要开发专门的工具来进行有效的管理和分析。本文介绍了一种专门为大数据分析量身定制的优化BLS (obs)。此外,进一步开发了深度优化的BLS (DOBLS)网络,提高了BLS的性能和效率。本文的主要贡献有:1)通过将网络的误差从输出空间回溯到潜在空间,OBLS调整特征和增强节点层的参数。这个过程旨在实现更有弹性的表示,从而提高性能;2) DOBLS是由多个OBLS组成的多层结构,其中每个OBLS连接到输入和输出层,实现数据的直接传播。这种设计有助于减少各层之间的信息丢失,确保信息在整个网络中有效流动;3)该方法在多视图特征嵌入、单类分类、相机模型识别、脑电图信号处理和雷达信号分析等应用中具有鲁棒性。实验结果验证了所提模型的有效性。为了确保可再现性,源代码可从https://github.com/1027051515/OBLS_DOBLS获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
Integral Reinforcement Learning-Based Dynamic Event-Triggered Nonzero-Sum Games of USVs Adaptive Event-Triggered Control Combined With High-Order Backstepping for Pure Feedback Nonlinear Systems Barycentric Coordinate-Based Distributed Localization for Wireless Sensor Networks Under False-Data-Injection Attacks Generation of Granular-Balls for Clustering Based on the Principle of Justifiable Granularity Sampled-Data Stochastic Stabilization of Markovian Jump Systems via an Optimizing Mode-Separation Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1