{"title":"Signal Integrity Optimization for C-PHY Channel Using Surrogate Model of Tab-Routing Structure","authors":"Yu-Ying Cheng;Tzong-Lin Wu","doi":"10.1109/TEMC.2024.3476489","DOIUrl":null,"url":null,"abstract":"This article presents the first comprehensive investigation into the crosstalk mechanism within a three-wire (four-conductor) C-PHY transmission channel based on mixed-mode theory (\n<italic>X</i>\n, \n<italic>Y</i>\n, and \n<italic>C</i>\n modes). The phase difference between \n<italic>X</i>\n and \n<italic>Y</i>\n modes is identified as a primary contributor to crosstalk, leading to signal integrity (SI) degradation. A tab-routing design is first specifically applied to enhance SI in three-wire (four-conductor) C-PHY channels. Additionally, an artificial neural network (ANN) based surrogate model is developed to map tab-routing parameters to eye-opening metrics efficiently. By combining the particle swarm optimization (PSO) algorithm with the ANN-based surrogate model, optimal geometrical parameters for the tab-routing C-PHY channel with enhanced SI performance can be quickly determined. The optimized three-wire tab-routing C-PHY channel, fabricated on a two-layer printed circuit board (PCB), demonstrates a 17.2% improvement in eye-opening and an 8.5% reduction in the occupied area compared to a typical 50 Ω three-wire channel. This article also represents the first application of machine learning (ANN, PSO) to C-PHY SI research, significantly improving design process efficiency. The feasibility and accuracy of the ANN-based surrogate model applied to the tab-routing C-PHY channel are thoroughly validated.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"66 6","pages":"2133-2141"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electromagnetic Compatibility","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10718700/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents the first comprehensive investigation into the crosstalk mechanism within a three-wire (four-conductor) C-PHY transmission channel based on mixed-mode theory (
X
,
Y
, and
C
modes). The phase difference between
X
and
Y
modes is identified as a primary contributor to crosstalk, leading to signal integrity (SI) degradation. A tab-routing design is first specifically applied to enhance SI in three-wire (four-conductor) C-PHY channels. Additionally, an artificial neural network (ANN) based surrogate model is developed to map tab-routing parameters to eye-opening metrics efficiently. By combining the particle swarm optimization (PSO) algorithm with the ANN-based surrogate model, optimal geometrical parameters for the tab-routing C-PHY channel with enhanced SI performance can be quickly determined. The optimized three-wire tab-routing C-PHY channel, fabricated on a two-layer printed circuit board (PCB), demonstrates a 17.2% improvement in eye-opening and an 8.5% reduction in the occupied area compared to a typical 50 Ω three-wire channel. This article also represents the first application of machine learning (ANN, PSO) to C-PHY SI research, significantly improving design process efficiency. The feasibility and accuracy of the ANN-based surrogate model applied to the tab-routing C-PHY channel are thoroughly validated.
期刊介绍:
IEEE Transactions on Electromagnetic Compatibility publishes original and significant contributions related to all disciplines of electromagnetic compatibility (EMC) and relevant methods to predict, assess and prevent electromagnetic interference (EMI) and increase device/product immunity. The scope of the publication includes, but is not limited to Electromagnetic Environments; Interference Control; EMC and EMI Modeling; High Power Electromagnetics; EMC Standards, Methods of EMC Measurements; Computational Electromagnetics and Signal and Power Integrity, as applied or directly related to Electromagnetic Compatibility problems; Transmission Lines; Electrostatic Discharge and Lightning Effects; EMC in Wireless and Optical Technologies; EMC in Printed Circuit Board and System Design.