Energy-dependent barren plateau in bosonic variational quantum circuits

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2024-10-14 DOI:10.1088/2058-9565/ad80bf
Bingzhi Zhang and Quntao Zhuang
{"title":"Energy-dependent barren plateau in bosonic variational quantum circuits","authors":"Bingzhi Zhang and Quntao Zhuang","doi":"10.1088/2058-9565/ad80bf","DOIUrl":null,"url":null,"abstract":"Bosonic variational quantum circuits (VQCs) are crucial for information processing in microwave cavities, trapped ions, and optical systems, widely applicable in quantum communication, sensing and error correction. The trainability of such VQCs is less understood, hindered by the lack of theoretical tools such as t-design due to the infinite dimension of the continuous-variable systems involved. We overcome this difficulty to reveal an energy-dependent barren plateau in such VQCs. The variance of the gradient decays as , exponential in the number of modes M but polynomial in the (per-mode) circuit energy E. The exponent ν = 1 for shallow circuits and ν = 2 for deep circuits. We prove these results for state preparation of general Gaussian states and number states. We also provide numerical evidence demonstrating that the results extend to general state preparation tasks. As circuit energy is a controllable parameter, we provide a strategy to mitigate the barren plateau in bosonic continuous-variable VQCs.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"69 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad80bf","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bosonic variational quantum circuits (VQCs) are crucial for information processing in microwave cavities, trapped ions, and optical systems, widely applicable in quantum communication, sensing and error correction. The trainability of such VQCs is less understood, hindered by the lack of theoretical tools such as t-design due to the infinite dimension of the continuous-variable systems involved. We overcome this difficulty to reveal an energy-dependent barren plateau in such VQCs. The variance of the gradient decays as , exponential in the number of modes M but polynomial in the (per-mode) circuit energy E. The exponent ν = 1 for shallow circuits and ν = 2 for deep circuits. We prove these results for state preparation of general Gaussian states and number states. We also provide numerical evidence demonstrating that the results extend to general state preparation tasks. As circuit energy is a controllable parameter, we provide a strategy to mitigate the barren plateau in bosonic continuous-variable VQCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玻色变分量子电路中与能量有关的贫瘠高原
玻色子变分量子电路(VQC)对于微波腔、被困离子和光学系统中的信息处理至关重要,广泛应用于量子通信、传感和纠错。由于所涉及的连续变量系统具有无限维度,缺乏诸如 t 设计之类的理论工具,因此人们对这类 VQC 的可训练性了解较少。我们克服了这一困难,揭示了这类 VQC 中与能量有关的贫瘠高原。梯度方差的衰减为 ,与模式数 M 成指数关系,但与(每模式)电路能量 E 成多项式关系。对于浅层电路,指数 ν = 1;对于深层电路,指数 ν = 2。我们为一般高斯态和数字态的状态准备证明了这些结果。我们还提供了数值证据,证明这些结果可以扩展到一般的状态准备任务。由于电路能量是一个可控参数,我们提供了一种策略来缓解玻色连续可变 VQC 中的贫瘠高原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Characterization and thermometry of dissipatively stabilized steady states Heat transport in the quantum Rabi model: universality and ultrastrong coupling effects Security of hybrid BB84 with heterodyne detection Robustness of diabatic enhancement in quantum annealing Scalable high-dimensional multipartite entanglement with trapped ions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1