Filamentary Hierarchies and Superbubbles: Galactic Multiscale Magnetohydrodynamic Simulations of Giant Molecular Cloud to Star Cluster Formation

Bo Zhao, Ralph E. Pudritz, Rachel Pillsworth, Hector Robinson and James Wadsley
{"title":"Filamentary Hierarchies and Superbubbles: Galactic Multiscale Magnetohydrodynamic Simulations of Giant Molecular Cloud to Star Cluster Formation","authors":"Bo Zhao, Ralph E. Pudritz, Rachel Pillsworth, Hector Robinson and James Wadsley","doi":"10.3847/1538-4357/ad67e2","DOIUrl":null,"url":null,"abstract":"There is now abundant observational evidence that star formation is a highly dynamical process that connects filament hierarchies and supernova feedback from galaxy-scale kiloparsec filaments and superbubbles to giant molecular clouds (GMCs) on 100 pc scales and star clusters (1 pc). Here we present galactic multiscale MHD simulations that track the formation of structure from galactic down to subparsec scales in a magnetized, Milky Way–like galaxy undergoing supernova-driven feedback processes. We do this by adopting a novel zoom-in technique that follows the evolution of typical 3 kpc subregions without cutting out the surrounding galactic environment, allowing us to reach 0.28 pc resolution in the individual zoom-in regions. We find a wide range of morphologies and hierarchical structures, including superbubbles, turbulence, and kiloparsec atomic gas filaments hosting multiple GMC condensations that are often associated with superbubble compression, down to smaller-scale filamentary GMCs and star cluster regions within them. Gas accretion and compression ultimately drive filaments over a critical, scale-dependent line mass leading to gravitational instabilities that produce GMCs and clusters. In quieter regions, galactic shear can produce filamentary GMCs within flattened, rotating disklike structures on 100 pc scales. Strikingly, our simulations demonstrate the formation of helical magnetic fields associated with the formation of these disklike structures.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad67e2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is now abundant observational evidence that star formation is a highly dynamical process that connects filament hierarchies and supernova feedback from galaxy-scale kiloparsec filaments and superbubbles to giant molecular clouds (GMCs) on 100 pc scales and star clusters (1 pc). Here we present galactic multiscale MHD simulations that track the formation of structure from galactic down to subparsec scales in a magnetized, Milky Way–like galaxy undergoing supernova-driven feedback processes. We do this by adopting a novel zoom-in technique that follows the evolution of typical 3 kpc subregions without cutting out the surrounding galactic environment, allowing us to reach 0.28 pc resolution in the individual zoom-in regions. We find a wide range of morphologies and hierarchical structures, including superbubbles, turbulence, and kiloparsec atomic gas filaments hosting multiple GMC condensations that are often associated with superbubble compression, down to smaller-scale filamentary GMCs and star cluster regions within them. Gas accretion and compression ultimately drive filaments over a critical, scale-dependent line mass leading to gravitational instabilities that produce GMCs and clusters. In quieter regions, galactic shear can produce filamentary GMCs within flattened, rotating disklike structures on 100 pc scales. Strikingly, our simulations demonstrate the formation of helical magnetic fields associated with the formation of these disklike structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丝状层次和超级气泡:从巨分子云到星团形成的银河系多尺度磁流体动力学模拟
现在有大量的观测证据表明,恒星形成是一个高度动态的过程,它将星系尺度的千帕斯卡细丝和超级气泡到 100 pc 尺度的巨分子云(GMC)和星团(1 pc)的细丝层次结构和超新星反馈联系在一起。在这里,我们介绍银河系多尺度 MHD 模拟,在一个磁化的、类似银河系的、经历超新星驱动反馈过程的星系中,跟踪从银河系尺度到亚秒尺度的结构形成过程。为此,我们采用了一种新颖的放大技术,跟踪典型的 3 kpc 子区域的演变,而不切断周围的星系环境,从而使我们能够在单个放大区域达到 0.28 pc 的分辨率。我们发现了广泛的形态和层次结构,包括超泡泡、湍流、千波长原子气体丝(通常与超泡泡压缩有关)、小尺度丝状 GMC 和其中的星团区域。气体的吸积和压缩最终会驱使丝状气体超过临界线质量,从而导致引力不稳定性,产生 GMC 和星团。在较安静的区域,银河剪切会在 100 pc 尺度的扁平旋转盘状结构中产生丝状 GMC。令人震惊的是,我们的模拟证明了螺旋磁场的形成与这些盘状结构的形成有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultraviolet Flux and Spectral Variability Study of Blazars Observed with UVIT/AstroSat The Peculiar Disk Evolution of 4U 1630-472 Observed by Insight-HXMT During its 2022 and 2023 Outbursts Stellar Metallicities and Gradients in the Faint M31 Satellites Andromeda XVI and Andromeda XXVIII Tidal Spin-up of Subdwarf B Stars Numerical Experiment on the Influence of Granulation-induced Waves on Solar Chromosphere Heating and Plasma Outflows in a Magnetic Arcade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1