Two-process Model and Residual Abundance Analysis of the Milky Way Massive Satellites

Sten Hasselquist, Christian R. Hayes, Emily J. Griffith, David Weinberg, Tawny Sit, Rachael L. Beaton and Danny Horta
{"title":"Two-process Model and Residual Abundance Analysis of the Milky Way Massive Satellites","authors":"Sten Hasselquist, Christian R. Hayes, Emily J. Griffith, David Weinberg, Tawny Sit, Rachael L. Beaton and Danny Horta","doi":"10.3847/1538-4357/ad70ad","DOIUrl":null,"url":null,"abstract":"The “two-process model” is a promising technique for interpreting stellar chemical abundance data from large-scale surveys (e.g., the Sloan Digital Sky Survey IV/V and the Galactic Archeology with HERMES survey), enabling more quantitative empirical studies of differences in chemical enrichment history between galaxies without relying on detailed yield and evolution models. In this work, we fit two-process model parameters to (1) a luminous giant Milky Way (MW) sample and (2) stars comprising the Sagittarius dwarf galaxy (Sgr). We then use these two sets of model parameters to predict the abundances of 14 elements of stars belonging to the MW and in five of its massive satellite galaxies, analyzing the residuals between the predicted and observed abundances. We find that the model fit to (1) results in large residuals (0.1–0.3 dex) for most metallicity-dependent elements in the metal-rich ([Mg/H] > −0.8) stars of the satellite galaxies. However, the model fit to (2) results in small or no residuals for all elements across all satellite galaxies. Therefore, despite the wide variation in [X/Mg]–[Mg/H] abundance patterns of the satellite galaxies, the two-process framework provides an accurate characterization of their abundance patterns across many elements, but these multielement patterns are systematically different between the dwarf galaxy satellites and the MW disks. We consider a variety of scenarios for the origin of this difference, highlighting the possibility that a large inflow of pristine gas to the MW disk diluted the metallicity of star-forming gas without changing abundance ratios.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad70ad","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The “two-process model” is a promising technique for interpreting stellar chemical abundance data from large-scale surveys (e.g., the Sloan Digital Sky Survey IV/V and the Galactic Archeology with HERMES survey), enabling more quantitative empirical studies of differences in chemical enrichment history between galaxies without relying on detailed yield and evolution models. In this work, we fit two-process model parameters to (1) a luminous giant Milky Way (MW) sample and (2) stars comprising the Sagittarius dwarf galaxy (Sgr). We then use these two sets of model parameters to predict the abundances of 14 elements of stars belonging to the MW and in five of its massive satellite galaxies, analyzing the residuals between the predicted and observed abundances. We find that the model fit to (1) results in large residuals (0.1–0.3 dex) for most metallicity-dependent elements in the metal-rich ([Mg/H] > −0.8) stars of the satellite galaxies. However, the model fit to (2) results in small or no residuals for all elements across all satellite galaxies. Therefore, despite the wide variation in [X/Mg]–[Mg/H] abundance patterns of the satellite galaxies, the two-process framework provides an accurate characterization of their abundance patterns across many elements, but these multielement patterns are systematically different between the dwarf galaxy satellites and the MW disks. We consider a variety of scenarios for the origin of this difference, highlighting the possibility that a large inflow of pristine gas to the MW disk diluted the metallicity of star-forming gas without changing abundance ratios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
银河系大质量卫星的双过程模型和残余丰度分析
双过程模型 "是解释大规模巡天(如斯隆数字巡天 IV/V 和银河考古与 HERMES 巡天)所获得的恒星化学丰度数据的一种很有前途的技术,它可以对星系间化学富集历史的差异进行更定量的实证研究,而无需依赖详细的产量和演化模型。在这项工作中,我们对(1)一个发光的巨型银河系(MW)样本和(2)人马座矮星系(Sgr)中的恒星拟合了两个过程模型参数。然后,我们利用这两组模型参数来预测银河系及其五个大质量卫星星系中恒星的 14 种元素丰度,并分析预测丰度与观测丰度之间的残差。我们发现,在卫星星系中富含金属([Mg/H] > -0.8)的恒星中,根据(1)拟合的模型会导致大部分与金属性有关的元素出现较大的残差(0.1-0.3 dex)。然而,根据(2)的模型拟合结果,所有卫星星系中所有元素的残差都很小或没有残差。因此,尽管卫星星系的[X/Mg]-[Mg/H]丰度模式差异很大,但双过程框架还是准确地描述了卫星星系多种元素的丰度模式,但这些多元素模式在矮星系卫星和MW盘之间存在系统性差异。我们考虑了造成这种差异的各种情况,强调了一种可能性,即大量原始气体流入MW盘,在不改变丰度比的情况下稀释了恒星形成气体的金属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultraviolet Flux and Spectral Variability Study of Blazars Observed with UVIT/AstroSat The Peculiar Disk Evolution of 4U 1630-472 Observed by Insight-HXMT During its 2022 and 2023 Outbursts Stellar Metallicities and Gradients in the Faint M31 Satellites Andromeda XVI and Andromeda XXVIII Tidal Spin-up of Subdwarf B Stars Numerical Experiment on the Influence of Granulation-induced Waves on Solar Chromosphere Heating and Plasma Outflows in a Magnetic Arcade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1