The Imprint of Dark Matter on the Galactic Acceleration Field

Arpit Arora, Robyn E. Sanderson, Sukanya Chakrabarti, Andrew Wetzel, Thomas Donlon II, Danny Horta, Sarah R. Loebman, Lina Necib and Micah Oeur
{"title":"The Imprint of Dark Matter on the Galactic Acceleration Field","authors":"Arpit Arora, Robyn E. Sanderson, Sukanya Chakrabarti, Andrew Wetzel, Thomas Donlon II, Danny Horta, Sarah R. Loebman, Lina Necib and Micah Oeur","doi":"10.3847/1538-4357/ad71c4","DOIUrl":null,"url":null,"abstract":"Measurements of the accelerations of stars enabled by time-series extreme-precision spectroscopic observations, pulsar timing, and eclipsing binary stars in the solar neighborhood offer insights into the mass distribution of the Milky Way that do not rely on traditional equilibrium modeling. Given the measured accelerations, we can determine a total mass density and infer the amount of dark matter (DM) by accounting for the mass in stars, gas, and dust. Leveraging FIRE-2 simulations of Milky Way–mass galaxies we compare vertical acceleration profiles between cold DM (CDM) and self-interacting DM (SIDM) with a constant cross section of 1 cm2 g−1 across three halos with diverse assembly histories. Notably, significant asymmetries in vertical acceleration profiles near the midplane at fixed radii are observed in both CDM and SIDM, particularly in halos recently affected by mergers with satellites of Sagittarius/SMC-like masses or greater. These asymmetries offer a unique window into exploring the merger history of a galaxy. We show that SIDM halos manifest a more oblate shape and consistently exhibit higher local stellar and DM densities and steeper vertical acceleration gradients, up to 10%–30% steeper near the solar neighborhood. However, similar magnitude changes can arise from azimuthal variations in the baryonic components at a fixed radius and external influences like mergers, making it difficult to distinguish between CDM and SIDM using acceleration measurements in a single galaxy.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad71c4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measurements of the accelerations of stars enabled by time-series extreme-precision spectroscopic observations, pulsar timing, and eclipsing binary stars in the solar neighborhood offer insights into the mass distribution of the Milky Way that do not rely on traditional equilibrium modeling. Given the measured accelerations, we can determine a total mass density and infer the amount of dark matter (DM) by accounting for the mass in stars, gas, and dust. Leveraging FIRE-2 simulations of Milky Way–mass galaxies we compare vertical acceleration profiles between cold DM (CDM) and self-interacting DM (SIDM) with a constant cross section of 1 cm2 g−1 across three halos with diverse assembly histories. Notably, significant asymmetries in vertical acceleration profiles near the midplane at fixed radii are observed in both CDM and SIDM, particularly in halos recently affected by mergers with satellites of Sagittarius/SMC-like masses or greater. These asymmetries offer a unique window into exploring the merger history of a galaxy. We show that SIDM halos manifest a more oblate shape and consistently exhibit higher local stellar and DM densities and steeper vertical acceleration gradients, up to 10%–30% steeper near the solar neighborhood. However, similar magnitude changes can arise from azimuthal variations in the baryonic components at a fixed radius and external influences like mergers, making it difficult to distinguish between CDM and SIDM using acceleration measurements in a single galaxy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
暗物质对银河加速场的影响
通过时间序列极精确光谱观测、脉冲星计时以及太阳附近的双星食变,我们可以测量恒星的加速度,从而了解银河系的质量分布,而这并不依赖于传统的平衡模型。根据测量到的加速度,我们可以确定总质量密度,并通过计算恒星、气体和尘埃的质量来推断暗物质(DM)的数量。利用 FIRE-2 对银河系质量星系的模拟,我们比较了冷暗物质(CDM)和自相互作用暗物质(SIDM)之间的垂直加速度剖面,冷暗物质的截面恒定为 1 cm2 g-1,而自相互作用暗物质的截面恒定为 1 cm2 g-1。值得注意的是,在CDM和SIDM中都观测到了固定半径下中平面附近垂直加速度剖面的明显不对称性,尤其是在最近受到与质量大于或等于人马座/SMC类似质量的卫星合并影响的光环中。这些不对称现象为探索星系的合并历史提供了一个独特的窗口。我们的研究表明,SIDM光环的形状更扁圆,并始终表现出更高的本地恒星密度和DM密度,以及更陡峭的垂直加速度梯度,在太阳附近陡峭程度可达10%-30%。然而,固定半径下重子成分的方位角变化以及合并等外部影响也会导致类似的量级变化,因此很难利用单个星系的加速度测量来区分CDM和SIDM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultraviolet Flux and Spectral Variability Study of Blazars Observed with UVIT/AstroSat The Peculiar Disk Evolution of 4U 1630-472 Observed by Insight-HXMT During its 2022 and 2023 Outbursts Stellar Metallicities and Gradients in the Faint M31 Satellites Andromeda XVI and Andromeda XXVIII Tidal Spin-up of Subdwarf B Stars Numerical Experiment on the Influence of Granulation-induced Waves on Solar Chromosphere Heating and Plasma Outflows in a Magnetic Arcade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1