Agile manipulation of the time-frequency distribution of high-speed electromagnetic waves

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-17 DOI:10.1038/s41467-024-53025-7
Xinyi Zhu, Benjamin Crockett, Connor M. L. Rowe, Hao Sun, José Azaña
{"title":"Agile manipulation of the time-frequency distribution of high-speed electromagnetic waves","authors":"Xinyi Zhu, Benjamin Crockett, Connor M. L. Rowe, Hao Sun, José Azaña","doi":"10.1038/s41467-024-53025-7","DOIUrl":null,"url":null,"abstract":"<p>Controlling the temporal evolution of an electromagnetic (EM) wave’s frequency components, the so-called time-frequency (TF) distribution, in a versatile and real-time fashion remains very challenging, especially at the high speeds (&gt; GHz regime) required in contemporary communication, imaging, and sensing applications. We propose a general framework for manipulating the TF properties of high-speed EM waves. Specifically, the TF distribution is continuously mapped along the time domain through phase-only processing, enabling its user-defined manipulation via widely-available temporal modulation techniques. The time-mapping operations can then be inverted to reconstruct the TF-processed signal. Using off-the-shelf telecommunication components, we demonstrate arbitrary control of the TF distribution of EM waves over a full bandwidth approaching 100 GHz with nanosecond-scale programmability and MHz-level frequency resolution. We further demonstrate applications for mitigating rapidly changing frequency interference terms and the direct synthesis of fast waveforms with customized TF distributions. The reported method represents a significant advancement in TF processing of EM waves and it fulfills the stringent requirements for many modern and emerging applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53025-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling the temporal evolution of an electromagnetic (EM) wave’s frequency components, the so-called time-frequency (TF) distribution, in a versatile and real-time fashion remains very challenging, especially at the high speeds (> GHz regime) required in contemporary communication, imaging, and sensing applications. We propose a general framework for manipulating the TF properties of high-speed EM waves. Specifically, the TF distribution is continuously mapped along the time domain through phase-only processing, enabling its user-defined manipulation via widely-available temporal modulation techniques. The time-mapping operations can then be inverted to reconstruct the TF-processed signal. Using off-the-shelf telecommunication components, we demonstrate arbitrary control of the TF distribution of EM waves over a full bandwidth approaching 100 GHz with nanosecond-scale programmability and MHz-level frequency resolution. We further demonstrate applications for mitigating rapidly changing frequency interference terms and the direct synthesis of fast waveforms with customized TF distributions. The reported method represents a significant advancement in TF processing of EM waves and it fulfills the stringent requirements for many modern and emerging applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
敏捷操控高速电磁波的时频分布
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Spatiotemporal cerebral blood flow dynamics underlies emergence of the limbic-sensorimotor-association cortical gradient in human infancy Agile manipulation of the time-frequency distribution of high-speed electromagnetic waves A conserved fungal morphogenetic kinase regulates pathogenic growth in response to carbon source diversity Parallel dynamics of slow slips and fluid-induced seismic swarms Prevalent and persistent new-onset autoantibodies in mild to severe COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1