Understanding the Impact of SAM Fermi Levels on High Efficiency p-i-n Perovskite Solar Cells

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-10-16 DOI:10.1021/acs.jpclett.4c02345
Fraser J. Angus, Wai Kin Yiu, Hongbo Mo, Tik Lun Leung, Muhammad Umair Ali, Yin Li, Jingbo Wang, Anita. W. Y. Ho-Baillie, Graeme Cooke, Aleksandra B. Djurišić, Pablo Docampo
{"title":"Understanding the Impact of SAM Fermi Levels on High Efficiency p-i-n Perovskite Solar Cells","authors":"Fraser J. Angus, Wai Kin Yiu, Hongbo Mo, Tik Lun Leung, Muhammad Umair Ali, Yin Li, Jingbo Wang, Anita. W. Y. Ho-Baillie, Graeme Cooke, Aleksandra B. Djurišić, Pablo Docampo","doi":"10.1021/acs.jpclett.4c02345","DOIUrl":null,"url":null,"abstract":"Completing the picture of the underlying physics of perovskite solar cell interfaces that incorporate self-assembled molecular layers (SAMs) will accelerate further progress in p-i-n devices. In this work, we modified the Fermi level of a nickel oxide–perovskite interface by utilizing SAM layers with a range of dipole strengths to establish the link between the resulting shift of the built-in potential of the solar cell and the device parameters. To achieve this, we fabricated a series of high-efficiency perovskite solar cells with no hysteresis and characterized them through stabilize and pulse (SaP), JV curve, and time-resolved photoluminescence (TRPL) measurements. Our results unambiguously show that the potential drop across the perovskite layer (in the range of 0.6–1 V) exceeds the work function difference at the device’s electrodes. These extracted potential drop values directly correlate to work function differences in the adjacent transport layers, thus demonstrating that their Fermi level difference entirely drives the built-in potential in this device configuration. Additionally, we find that selecting a SAM with a deep HOMO level can result in charge accumulation at the interface, leading to reduced current flow. Our findings provide insights into the device physics of p-i-n perovskite solar cells, highlighting the importance of interfacial energetics on device performance.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02345","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Completing the picture of the underlying physics of perovskite solar cell interfaces that incorporate self-assembled molecular layers (SAMs) will accelerate further progress in p-i-n devices. In this work, we modified the Fermi level of a nickel oxide–perovskite interface by utilizing SAM layers with a range of dipole strengths to establish the link between the resulting shift of the built-in potential of the solar cell and the device parameters. To achieve this, we fabricated a series of high-efficiency perovskite solar cells with no hysteresis and characterized them through stabilize and pulse (SaP), JV curve, and time-resolved photoluminescence (TRPL) measurements. Our results unambiguously show that the potential drop across the perovskite layer (in the range of 0.6–1 V) exceeds the work function difference at the device’s electrodes. These extracted potential drop values directly correlate to work function differences in the adjacent transport layers, thus demonstrating that their Fermi level difference entirely drives the built-in potential in this device configuration. Additionally, we find that selecting a SAM with a deep HOMO level can result in charge accumulation at the interface, leading to reduced current flow. Our findings provide insights into the device physics of p-i-n perovskite solar cells, highlighting the importance of interfacial energetics on device performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解 SAM 费米级对高效 pi-i-n Perovskite 太阳能电池的影响
完善包含自组装分子层(SAM)的包晶太阳能电池界面的基本物理学原理,将加速 pi-n 器件的进一步发展。在这项研究中,我们利用具有不同偶极子强度的 SAM 层改变了氧化镍-透辉石界面的费米级,从而建立了太阳能电池内置电势的变化与器件参数之间的联系。为此,我们制造了一系列无滞后的高效率过氧化物太阳能电池,并通过稳定和脉冲(SaP)、JV 曲线和时间分辨光致发光(TRPL)测量对其进行了表征。我们的研究结果明确显示,过氧化物层上的电位差(范围在 0.6-1 V 之间)超过了器件电极上的功函数差。这些提取的电位降值与相邻传输层的功函数差直接相关,从而证明它们的费米级差完全驱动了该器件配置中的内置电位。此外,我们还发现,选择具有较深 HOMO 水平的 SAM 会导致电荷在界面处积累,从而降低电流。我们的研究结果为 pi-i-n 包晶太阳能电池的器件物理学提供了见解,突出了界面能量学对器件性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Bond Dissociation Energy of CO2 with Spectroscopic Accuracy Using State-to-State Resolved Threshold Fragment Yield Spectra. Environment- and Conformation-Induced Frequency Shifts of C-D Vibrational Stark Probes in NAD(P)H Cofactors. Extracting the Heterogeneous 3D Structure of Molecular Films Using Higher Dimensional SFG Microscopy. Rational Control of Maximum EMI/CPL Intensity and Wavelength of Bora[6]helicene via Polarity and Vibronic Effects. When a Twist Makes a Difference: Exploring PCET and ESIPT on a Nonplanar Hydrogen-Bonded Donor-Acceptor System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1