Mohd Mustafa , Tabee Jan , Shabnam Raheem , Junaid Afzal , Naveed Nazir , Mubashir Hussain Masoodi , Masood Ahmad Rizvi
{"title":"Supradecoration induced novel Properties: A comparative study of Ferrocene and Ferrocenyl α-aminophosphonate","authors":"Mohd Mustafa , Tabee Jan , Shabnam Raheem , Junaid Afzal , Naveed Nazir , Mubashir Hussain Masoodi , Masood Ahmad Rizvi","doi":"10.1016/j.poly.2024.117253","DOIUrl":null,"url":null,"abstract":"<div><div>Decorating chemical motifs with appropriate functional groups capable of supramolecular interactions hold key in modulating these novel systems for targeted applications. This work by means of a comparative study of Ferrocene and Ferrocenyl α- aminophosphonate highlight supradecoration induced multi paradigm properties across materials to medicine. The observed results indicate an increase in crystal framework energy with induction of mechanochromism and aggregation-induced emission in case of Ferrocenyl-α-amino phosphonate as novel supra decorated Ferrocene motif. Comparative BSA and BLC studies indicated improved biocompatibility with enhancement of catalase enzyme activity in case of Ferrocenyl-α- aminophosphonate compared to pristine Ferrocene. The relative quantification of intermolecular non covalent interactions of Ferrocene and Ferrocenyl-α- aminophosphonate evaluated using Quantum crystallographic methods and non-covalent interaction analysis were used to corroborate the supramodulation effects. The observed influence of Ferrocenyl α-aminophosphonate on the enzymatic activity of catalase was also examined using a comparative molecular docking analysis. The docking results corroborated influence of supradecoration on binding affinity and binding site, which are vital for designing ligands of enhanced catalase activity and also helpful in prediction of newer regulatory sites on enzyme. Taken together this work signifies how supra decoration of Ferrocene motif with functionalities capable of diverse intermolecular non-covalent interactions modulate molecular properties for newer applications.</div></div>","PeriodicalId":20278,"journal":{"name":"Polyhedron","volume":"264 ","pages":"Article 117253"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyhedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277538724004297","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Decorating chemical motifs with appropriate functional groups capable of supramolecular interactions hold key in modulating these novel systems for targeted applications. This work by means of a comparative study of Ferrocene and Ferrocenyl α- aminophosphonate highlight supradecoration induced multi paradigm properties across materials to medicine. The observed results indicate an increase in crystal framework energy with induction of mechanochromism and aggregation-induced emission in case of Ferrocenyl-α-amino phosphonate as novel supra decorated Ferrocene motif. Comparative BSA and BLC studies indicated improved biocompatibility with enhancement of catalase enzyme activity in case of Ferrocenyl-α- aminophosphonate compared to pristine Ferrocene. The relative quantification of intermolecular non covalent interactions of Ferrocene and Ferrocenyl-α- aminophosphonate evaluated using Quantum crystallographic methods and non-covalent interaction analysis were used to corroborate the supramodulation effects. The observed influence of Ferrocenyl α-aminophosphonate on the enzymatic activity of catalase was also examined using a comparative molecular docking analysis. The docking results corroborated influence of supradecoration on binding affinity and binding site, which are vital for designing ligands of enhanced catalase activity and also helpful in prediction of newer regulatory sites on enzyme. Taken together this work signifies how supra decoration of Ferrocene motif with functionalities capable of diverse intermolecular non-covalent interactions modulate molecular properties for newer applications.
期刊介绍:
Polyhedron publishes original, fundamental, experimental and theoretical work of the highest quality in all the major areas of inorganic chemistry. This includes synthetic chemistry, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and solid-state and materials chemistry.
Papers should be significant pieces of work, and all new compounds must be appropriately characterized. The inclusion of single-crystal X-ray structural data is strongly encouraged, but papers reporting only the X-ray structure determination of a single compound will usually not be considered. Papers on solid-state or materials chemistry will be expected to have a significant molecular chemistry component (such as the synthesis and characterization of the molecular precursors and/or a systematic study of the use of different precursors or reaction conditions) or demonstrate a cutting-edge application (for example inorganic materials for energy applications). Papers dealing only with stability constants are not considered.