Dynamic behaviour and failure mechanism of bamboo scrimber panels under single and repeated impacts: Experimental tests

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of building engineering Pub Date : 2024-10-10 DOI:10.1016/j.jobe.2024.111013
{"title":"Dynamic behaviour and failure mechanism of bamboo scrimber panels under single and repeated impacts: Experimental tests","authors":"","doi":"10.1016/j.jobe.2024.111013","DOIUrl":null,"url":null,"abstract":"<div><div>Bamboo scrimber, as a renewable and sustainable material engineered from bamboo, is inevitably subjected to impact loadings in engineering applications. To study the dynamic behaviour and failure mechanism of bamboo scrimber panels under low-velocity impact, a series of drop hammer impact tests were conducted on 36 panels. The peak force, deformation and energy absorption of bamboo scrimber panels were obtained and analysed. The influence of impact energy, impactor shape and impact angle on the dynamic behaviour of panels was quantitatively characterised. Besides, based on test observations and microscopic views, the failure mechanism of bamboo scrimber panels under different impact types was revealed, including the energy absorption mechanism through fibre fracture, fibre debonding, fibre pull-out and matrix failure. Test results showed that with increasing impact energy, the peak force of panels impacted by the spherical and flat impactors increased, while that of panels impacted by the wedge impactor did not vary significantly. The deformation and energy absorption of panels also increased with increasing impact energy. Notably, the impactor shape obviously influenced the dynamic behaviour of panels, causing a higher peak force of panels impacted by the flat impactor and a larger deformation of panels impacted by the wedge impactor. The failure mechanism of panels depended highly on the impact energy and the impactor shape. Finally, a comparative study of single versus repeated impacts revealed that the deformation of bamboo scrimber panels under repeated impacts was less than that of panels under a single impact when the same amount of energy was imposed to the panel. This study provided a basis for the use of bamboo scrimber to resist impact loadings.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710224025816","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bamboo scrimber, as a renewable and sustainable material engineered from bamboo, is inevitably subjected to impact loadings in engineering applications. To study the dynamic behaviour and failure mechanism of bamboo scrimber panels under low-velocity impact, a series of drop hammer impact tests were conducted on 36 panels. The peak force, deformation and energy absorption of bamboo scrimber panels were obtained and analysed. The influence of impact energy, impactor shape and impact angle on the dynamic behaviour of panels was quantitatively characterised. Besides, based on test observations and microscopic views, the failure mechanism of bamboo scrimber panels under different impact types was revealed, including the energy absorption mechanism through fibre fracture, fibre debonding, fibre pull-out and matrix failure. Test results showed that with increasing impact energy, the peak force of panels impacted by the spherical and flat impactors increased, while that of panels impacted by the wedge impactor did not vary significantly. The deformation and energy absorption of panels also increased with increasing impact energy. Notably, the impactor shape obviously influenced the dynamic behaviour of panels, causing a higher peak force of panels impacted by the flat impactor and a larger deformation of panels impacted by the wedge impactor. The failure mechanism of panels depended highly on the impact energy and the impactor shape. Finally, a comparative study of single versus repeated impacts revealed that the deformation of bamboo scrimber panels under repeated impacts was less than that of panels under a single impact when the same amount of energy was imposed to the panel. This study provided a basis for the use of bamboo scrimber to resist impact loadings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
竹护壁板在单次和多次撞击下的动态行为和破坏机理:实验测试
竹集成材是一种由竹子制成的可再生和可持续材料,在工程应用中不可避免地会受到冲击载荷的影响。为了研究竹集成材在低速冲击下的动态行为和破坏机制,对 36 块竹集成材进行了一系列落锤冲击试验。试验获得并分析了竹集成材的峰值力、变形和能量吸收。定量分析了冲击能量、冲击器形状和冲击角度对板材动态行为的影响。此外,根据试验观察和显微镜观察,还揭示了竹集成材在不同冲击类型下的破坏机理,包括通过纤维断裂、纤维脱胶、纤维拉出和基体破坏吸收能量的机理。试验结果表明,随着冲击能量的增加,受球形和平面冲击器冲击的竹材的峰值力增加,而受楔形冲击器冲击的竹材的峰值力变化不大。面板的变形和能量吸收也随着冲击能量的增加而增加。值得注意的是,撞击器的形状明显影响了面板的动态行为,导致受到扁平撞击器撞击的面板峰值力更大,而受到楔形撞击器撞击的面板变形量更大。面板的破坏机制在很大程度上取决于冲击能量和冲击器形状。最后,对单次冲击和重复冲击的比较研究表明,在施加相同能量的情况下,重复冲击下竹材的变形量小于单次冲击下的变形量。这项研究为使用竹制护壁板抵抗冲击载荷提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
期刊最新文献
Editorial Board The effect of copper slag as a precursor on the mechanical properties, shrinkage and pore structure of alkali-activated slag-copper slag mortar Experimental study on the products of coupling effect between microbial induced carbonate precipitation (MICP) and the pozzolanic effect of metakaolin Automated evaluation of degradation in stone heritage structures utilizing deep vision in synthetic and real-time environments Analysis of waste glass as a partial substitute for coarse aggregate in self-compacting concrete: An experimental and machine learning study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1