{"title":"Efficient electromagnetic transient simulation for DFIG-based wind farms using fine-grained network partitioning","authors":"Jiale Yu, Haoran Zhao, Yibao Jiang, Bing Li, Linghan Meng, Futao Yang","doi":"10.1016/j.ijepes.2024.110297","DOIUrl":null,"url":null,"abstract":"<div><div>Electromagnetic transient (EMT) simulation plays a critical role in understanding the dynamic behavior and fast transients involved in wind farms (WFs). However, as WFs continue to develop on a large scale, the increasing number of wind turbines and network nodes poses significant challenges for efficient EMT simulation of WFs. To address this issue, we propose a fine-grained network decoupling method for doubly-fed induction generator (DFIG) based WFs. This paper first establishes the decoupling algorithm for core electrical equipment of DFIG-based WFs. By employing device-level fine-grained decoupling, the dimensionality of the admittance matrix for WF is effectively reduced, significantly decreasing the computational load. Additionally, this paper establishes a scalable computational framework by integrating multi-threaded parallel computation into the simulation process, which enhances efficiency further. The proposed method is compared with detailed models in Matlab/Simulink to verify efficiency and accuracy. Simulation results demonstrate that this method significantly improves simulation efficiency, achieving a two-order-of-magnitude speedup with 50 wind turbines, and it maintains high simulation accuracy, with a maximum relative error of 1.68%.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110297"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005192","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electromagnetic transient (EMT) simulation plays a critical role in understanding the dynamic behavior and fast transients involved in wind farms (WFs). However, as WFs continue to develop on a large scale, the increasing number of wind turbines and network nodes poses significant challenges for efficient EMT simulation of WFs. To address this issue, we propose a fine-grained network decoupling method for doubly-fed induction generator (DFIG) based WFs. This paper first establishes the decoupling algorithm for core electrical equipment of DFIG-based WFs. By employing device-level fine-grained decoupling, the dimensionality of the admittance matrix for WF is effectively reduced, significantly decreasing the computational load. Additionally, this paper establishes a scalable computational framework by integrating multi-threaded parallel computation into the simulation process, which enhances efficiency further. The proposed method is compared with detailed models in Matlab/Simulink to verify efficiency and accuracy. Simulation results demonstrate that this method significantly improves simulation efficiency, achieving a two-order-of-magnitude speedup with 50 wind turbines, and it maintains high simulation accuracy, with a maximum relative error of 1.68%.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.