Shuyi Zhou , Jiuke Wang , Yuhan Cao , Brandon J. Bethel , Wenhong Xie , Guangjun Xu , Wenjin Sun , Yang Yu , Hongchun Zhang , Changming Dong
{"title":"Improving the accuracy of global ECMWF wave height forecasts with machine learning","authors":"Shuyi Zhou , Jiuke Wang , Yuhan Cao , Brandon J. Bethel , Wenhong Xie , Guangjun Xu , Wenjin Sun , Yang Yu , Hongchun Zhang , Changming Dong","doi":"10.1016/j.ocemod.2024.102450","DOIUrl":null,"url":null,"abstract":"<div><div>Significant wave height (SWH) stands as one of the most crucial parameters for maritime activities. However, even the SWH data from the widely utilized European Centre for Medium-Range Weather Forecast Integrated Forecasting System (ECMWF-IFS) carries errors and uncertainties. In this study, the Light Gradient Boosting Machine (LightGBM) is used to inference the global ECMWF-IFS SWH forecast biases. The results demonstrate that globally, the LightGBM reduces the root mean square error by 10–20 %. Particularly noteworthy is the enhanced forecast accuracy observed in the western Pacific during late summers. Furthermore, the corrected forecast results during Super Typhoon Lekima in 2019 showcase the capability of model to effectively enhance the forecast accuracy of typhoon-induced wind waves, even when four typhoons occur concurrently. This study establishes the feasibility of LightGBM in inferencing single-step SWH forecast bias and presents a cost-effective model for enhancing global wave forecasts.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"192 ","pages":"Article 102450"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001379","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Significant wave height (SWH) stands as one of the most crucial parameters for maritime activities. However, even the SWH data from the widely utilized European Centre for Medium-Range Weather Forecast Integrated Forecasting System (ECMWF-IFS) carries errors and uncertainties. In this study, the Light Gradient Boosting Machine (LightGBM) is used to inference the global ECMWF-IFS SWH forecast biases. The results demonstrate that globally, the LightGBM reduces the root mean square error by 10–20 %. Particularly noteworthy is the enhanced forecast accuracy observed in the western Pacific during late summers. Furthermore, the corrected forecast results during Super Typhoon Lekima in 2019 showcase the capability of model to effectively enhance the forecast accuracy of typhoon-induced wind waves, even when four typhoons occur concurrently. This study establishes the feasibility of LightGBM in inferencing single-step SWH forecast bias and presents a cost-effective model for enhancing global wave forecasts.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.