Mischa Borsdorf , Stefan Papenkort , Markus Böl , Tobias Siebert
{"title":"Influence of muscle packing on the three-dimensional architecture of rabbit M. plantaris","authors":"Mischa Borsdorf , Stefan Papenkort , Markus Böl , Tobias Siebert","doi":"10.1016/j.jmbbm.2024.106762","DOIUrl":null,"url":null,"abstract":"<div><div>In their physiological condition, muscles are surrounded by connective tissue, other muscles and bone. These tissues exert transverse forces that change the three-dimensional shape of the muscle compared to its isolated condition, in which all surrounding tissues are removed. A change in shape affects the architecture of a muscle and therefore its mechanical properties. The rabbit <em>M. plantaris</em> is a multi-pennate calf muscle consisting of two compartments. A smaller, bi-pennate inner muscle compartment is embedded in a larger, uni-pennate outer compartment (Böl et al., 2015). As part of the calf, the plantaris is tightly packed between other muscles. It is unclear how packing affects the shape and architecture of the plantaris. Therefore, we examined the isolated and packed plantaris of the contralateral legs of three rabbits to determine the influence of the surrounding muscles on its shape and architectural properties using photogrammetric reconstruction and manual digitization, respectively. In the packed condition, the plantaris showed a 27% increase in fascicle pennation and a 54% increase in fascicle curvature compared to the isolated condition. Fascicle length was not affected by muscle packing. The change in muscle architecture occurred mainly in the outer compartment of the plantaris. Furthermore, the isolated plantaris showed a more circular shape and a reduced width of its muscle belly. It can be concluded that the packed plantaris is flattened by the forces exerted by the surrounding muscles, causing a complex architectural change. The data provided improve our understanding of muscle packages in general and can be used to develop and validate realistic three-dimensional muscle models.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106762"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124003941","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In their physiological condition, muscles are surrounded by connective tissue, other muscles and bone. These tissues exert transverse forces that change the three-dimensional shape of the muscle compared to its isolated condition, in which all surrounding tissues are removed. A change in shape affects the architecture of a muscle and therefore its mechanical properties. The rabbit M. plantaris is a multi-pennate calf muscle consisting of two compartments. A smaller, bi-pennate inner muscle compartment is embedded in a larger, uni-pennate outer compartment (Böl et al., 2015). As part of the calf, the plantaris is tightly packed between other muscles. It is unclear how packing affects the shape and architecture of the plantaris. Therefore, we examined the isolated and packed plantaris of the contralateral legs of three rabbits to determine the influence of the surrounding muscles on its shape and architectural properties using photogrammetric reconstruction and manual digitization, respectively. In the packed condition, the plantaris showed a 27% increase in fascicle pennation and a 54% increase in fascicle curvature compared to the isolated condition. Fascicle length was not affected by muscle packing. The change in muscle architecture occurred mainly in the outer compartment of the plantaris. Furthermore, the isolated plantaris showed a more circular shape and a reduced width of its muscle belly. It can be concluded that the packed plantaris is flattened by the forces exerted by the surrounding muscles, causing a complex architectural change. The data provided improve our understanding of muscle packages in general and can be used to develop and validate realistic three-dimensional muscle models.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.