Mahbubur Rahman , Mohashin Kabir , Kun Li , Yiran Li , Shaojuan Chen , Shaohua Wu
{"title":"Electrospun zeolitic imidazole framework-8 loaded silk fibroin/polycaprolactone nanofibrous scaffolds for biomedical application","authors":"Mahbubur Rahman , Mohashin Kabir , Kun Li , Yiran Li , Shaojuan Chen , Shaohua Wu","doi":"10.1016/j.jmbbm.2024.106769","DOIUrl":null,"url":null,"abstract":"<div><div>The development of electrospun nanofibrous scaffolds (NFSs) have aroused much attraction in the field of biomedical engineering, due to their small fiber diameter, high specific surface area, and excellent extracellular matrix comparability. The main focus of this study is to design and fabricate novel zeolitic imidazole framework-8 (ZIF-8)-loaded silk fibrin/polycaprolactone (SF/PCL) nanofiber composite scaffolds by using the electrospinning strategy. Firstly, ZIF-8 was synthesized and characterized, which showed remarkable features in terms of shape, size, chemical and physical properties. Then, three different amounts of ZIF-8 were encapsulated into SF/PCL nanofibers during electrospinning, to investigate how the addition of ZIF-8 affected the morphology, and structure, as well as physical, mechanical, and biological properties of the nanofiber composite scaffolds. It was found that the addition of ZIF-8 didn't change the nanofibrous morphology of the composite scaffold, and no bead-like structure were found for the SF/PCL composite scaffolds loading with or without ZIF-8. The appropriate addition of ZIF-8 could significantly increase the mechanical properties of SF/PCL NFSs. The SF/PCL NFS containing 5% ZIF-8 showed high ultimate stress and initial modulus, which were 40.31 ± 2.31 MPa, and 569.19 ± 21.38 MPa, respectively. Furthermore, the MTT assay indicated that the pure SF/PCL scaffold and one with 1% ZIF-8 exhibited nearly identical cell compatibility toward human dermal fibroblast (HDF) cells, but some obvious cytotoxicity was observed with the increase of ZIF-8 content. However, the incorporation of ZIF-8 into SF/PCL NFSs was found to have excellent antibacterial rate against both <em>E. coli</em> and <em>S. aureus</em>. In all, the incorporation of 1% ZIF-8 could impart the SF/PCL NFS with balanced bio-function, making it a promising candidate for diverse biomedical applications such as tissue engineering and wound healing.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106769"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of electrospun nanofibrous scaffolds (NFSs) have aroused much attraction in the field of biomedical engineering, due to their small fiber diameter, high specific surface area, and excellent extracellular matrix comparability. The main focus of this study is to design and fabricate novel zeolitic imidazole framework-8 (ZIF-8)-loaded silk fibrin/polycaprolactone (SF/PCL) nanofiber composite scaffolds by using the electrospinning strategy. Firstly, ZIF-8 was synthesized and characterized, which showed remarkable features in terms of shape, size, chemical and physical properties. Then, three different amounts of ZIF-8 were encapsulated into SF/PCL nanofibers during electrospinning, to investigate how the addition of ZIF-8 affected the morphology, and structure, as well as physical, mechanical, and biological properties of the nanofiber composite scaffolds. It was found that the addition of ZIF-8 didn't change the nanofibrous morphology of the composite scaffold, and no bead-like structure were found for the SF/PCL composite scaffolds loading with or without ZIF-8. The appropriate addition of ZIF-8 could significantly increase the mechanical properties of SF/PCL NFSs. The SF/PCL NFS containing 5% ZIF-8 showed high ultimate stress and initial modulus, which were 40.31 ± 2.31 MPa, and 569.19 ± 21.38 MPa, respectively. Furthermore, the MTT assay indicated that the pure SF/PCL scaffold and one with 1% ZIF-8 exhibited nearly identical cell compatibility toward human dermal fibroblast (HDF) cells, but some obvious cytotoxicity was observed with the increase of ZIF-8 content. However, the incorporation of ZIF-8 into SF/PCL NFSs was found to have excellent antibacterial rate against both E. coli and S. aureus. In all, the incorporation of 1% ZIF-8 could impart the SF/PCL NFS with balanced bio-function, making it a promising candidate for diverse biomedical applications such as tissue engineering and wound healing.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.