The question answering system GeoQA2 and a new benchmark for its evaluation

Sergios-Anestis Kefalidis , Dharmen Punjani , Eleni Tsalapati , Konstantinos Plas , Maria-Aggeliki Pollali , Pierre Maret , Manolis Koubarakis
{"title":"The question answering system GeoQA2 and a new benchmark for its evaluation","authors":"Sergios-Anestis Kefalidis ,&nbsp;Dharmen Punjani ,&nbsp;Eleni Tsalapati ,&nbsp;Konstantinos Plas ,&nbsp;Maria-Aggeliki Pollali ,&nbsp;Pierre Maret ,&nbsp;Manolis Koubarakis","doi":"10.1016/j.jag.2024.104203","DOIUrl":null,"url":null,"abstract":"<div><div>We present the question answering engine GeoQA2 which is able to answer geospatial questions over the union of knowledge graphs YAGO2 and YAGO2geo. We also present the dataset <span>GeoQuestions1089</span> which consists of 1089 natural language questions, their corresponding SPARQL or GeoSPARQL queries and their answers over the union of the same knowledge graphs. We use this dataset to compare the effectiveness of GeoQA2 and the system of Hamzei et al. 2022 and make it publicly available to be used by other researchers. Our evaluation shows that although the engine GeoQA2 performs better than the engine of Hamzei et al. 2022, both engines have ample room for improvement in their question answering performance.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104203"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

We present the question answering engine GeoQA2 which is able to answer geospatial questions over the union of knowledge graphs YAGO2 and YAGO2geo. We also present the dataset GeoQuestions1089 which consists of 1089 natural language questions, their corresponding SPARQL or GeoSPARQL queries and their answers over the union of the same knowledge graphs. We use this dataset to compare the effectiveness of GeoQA2 and the system of Hamzei et al. 2022 and make it publicly available to be used by other researchers. Our evaluation shows that although the engine GeoQA2 performs better than the engine of Hamzei et al. 2022, both engines have ample room for improvement in their question answering performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
问题解答系统 GeoQA2 及其新的评估基准
我们介绍的问题解答引擎 GeoQA2 能够回答 YAGO2 和 YAGO2geo 知识图谱联合体上的地理空间问题。我们还介绍了数据集 GeoQuestions1089,该数据集由 1089 个自然语言问题、相应的 SPARQL 或 GeoSPARQL 查询及其在相同知识图谱结合体上的答案组成。我们利用这个数据集来比较 GeoQA2 和 Hamzei 等人的系统 2022 的有效性,并将其公开供其他研究人员使用。我们的评估结果表明,尽管 GeoQA2 引擎的性能优于 Hamzei 等人的 2022 引擎,但这两个引擎的问题解答性能都有很大的提升空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Combining readily available population and land cover maps to generate non-residential built-up labels to train Sentinel-2 image segmentation models An intercomparison of national and global land use and land cover products for Fiji The illusion of success: Test set disproportion causes inflated accuracy in remote sensing mapping research Multispectral imaging and terrestrial laser scanning for the detection of drought-induced paraheliotropic leaf movement in soybean DeLA: An extremely faster network with decoupled local aggregation for large scale point cloud learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1