{"title":"Simultaneous multinuclear MRI via a single RF channel","authors":"","doi":"10.1016/j.jmr.2024.107782","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic resonance imaging (MRI) stands as one of the most powerful noninvasive and non-destructive imaging techniques, finding extensive utility in medical and industrial applications. Its ability to acquire signals from multiple nuclei grants it additional levels of strength by providing multi-dimensional datasets of the object under test. However, this typically requires dedicated hardware to detect each nucleus. In this paper, we report on the use of a digital lock-in amplifier to perform simultaneous multi-nuclear MRI with a single physical radio frequency (RF) channel. While we showcase this concept by demonstrating the results of fully parallel (TX and RX) <sup>1</sup>H and <sup>19</sup>F MRI images, we emphasize that it is not limited to two nuclei but can accommodate more nuclei with no extra cost on the hardware or scan time. The scalability is virtually unlimited, constrained only by the processing speed of the digital unit. Furthermore, we demonstrate that the quality of parallel imaging with SNR of 54 is comparable to the commercial single channel with SNR of 43. Thus with no reduction in imaging quality, the proposed concept promises a tremendous reduction in scan time, system complexity, and hardware costs.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001666","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic resonance imaging (MRI) stands as one of the most powerful noninvasive and non-destructive imaging techniques, finding extensive utility in medical and industrial applications. Its ability to acquire signals from multiple nuclei grants it additional levels of strength by providing multi-dimensional datasets of the object under test. However, this typically requires dedicated hardware to detect each nucleus. In this paper, we report on the use of a digital lock-in amplifier to perform simultaneous multi-nuclear MRI with a single physical radio frequency (RF) channel. While we showcase this concept by demonstrating the results of fully parallel (TX and RX) 1H and 19F MRI images, we emphasize that it is not limited to two nuclei but can accommodate more nuclei with no extra cost on the hardware or scan time. The scalability is virtually unlimited, constrained only by the processing speed of the digital unit. Furthermore, we demonstrate that the quality of parallel imaging with SNR of 54 is comparable to the commercial single channel with SNR of 43. Thus with no reduction in imaging quality, the proposed concept promises a tremendous reduction in scan time, system complexity, and hardware costs.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.