Artificial Intelligence-Driven Framework for Augmented Reality Markerless Navigation in Knee Surgery

Xue Hu;Fabrizio Cutolo;Hisham Iqbal;Johann Henckel;Ferdinando Rodriguez y Baena
{"title":"Artificial Intelligence-Driven Framework for Augmented Reality Markerless Navigation in Knee Surgery","authors":"Xue Hu;Fabrizio Cutolo;Hisham Iqbal;Johann Henckel;Ferdinando Rodriguez y Baena","doi":"10.1109/TAI.2024.3429048","DOIUrl":null,"url":null,"abstract":"Conventional orthopedic navigation systems depend on marker-based tracking, which may introduce additional skin incisions, increase the risk and discomfort for the patient, and entail increased workflow complexity. The guidance is conveyed via 2-D monitors, which may distract the surgeon and increase the cognitive burden. This study presents an artificial intelligence (AI)—driven surgical navigation framework for knee replacement surgery. The system comprises an augmented reality (AR) interface that combines an occlusions-robust deep learning-based markerless bone tracking and registration algorithm with a commercial HoloLens 2 headset calibrated for the user's perspective on both eyes. The feasibility of such a system in navigating a bone drilling task is investigated with an experienced orthopedic surgeon on three cadaveric knees under realistic operating room (OR) conditions. After registering an implant model to computed tomography (CT) scans, the preoperative plans are determined based on the location of the fixation pins. Navigation accuracy is quantified using a highly accurate optical tracking system. The achieved drilling error is 7.88 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 2.41 mm in translation and 7.36 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 1.77\n<inline-formula><tex-math>${}^{\\boldsymbol{\\circ}}$</tex-math></inline-formula>\n in orientation. The results demonstrate the viability of integrating AI and AR technology to navigate knee surgery.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 10","pages":"5205-5215"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599938","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10599938/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional orthopedic navigation systems depend on marker-based tracking, which may introduce additional skin incisions, increase the risk and discomfort for the patient, and entail increased workflow complexity. The guidance is conveyed via 2-D monitors, which may distract the surgeon and increase the cognitive burden. This study presents an artificial intelligence (AI)—driven surgical navigation framework for knee replacement surgery. The system comprises an augmented reality (AR) interface that combines an occlusions-robust deep learning-based markerless bone tracking and registration algorithm with a commercial HoloLens 2 headset calibrated for the user's perspective on both eyes. The feasibility of such a system in navigating a bone drilling task is investigated with an experienced orthopedic surgeon on three cadaveric knees under realistic operating room (OR) conditions. After registering an implant model to computed tomography (CT) scans, the preoperative plans are determined based on the location of the fixation pins. Navigation accuracy is quantified using a highly accurate optical tracking system. The achieved drilling error is 7.88 $\pm$ 2.41 mm in translation and 7.36 $\pm$ 1.77 ${}^{\boldsymbol{\circ}}$ in orientation. The results demonstrate the viability of integrating AI and AR technology to navigate knee surgery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能驱动的膝关节手术增强现实无标记导航框架
传统的骨科导航系统依赖于基于标记的跟踪,这可能会带来额外的皮肤切口,增加病人的风险和不适感,并增加工作流程的复杂性。导引通过二维显示器传递,这可能会分散外科医生的注意力,增加认知负担。本研究提出了一种人工智能(AI)驱动的膝关节置换手术导航框架。该系统包括一个增强现实(AR)界面,它将基于闭塞的深度学习无标记骨追踪和配准算法与根据用户双眼视角校准的商用 HoloLens 2 头显相结合。在真实的手术室(OR)条件下,由一名经验丰富的骨科医生对三个尸体膝关节进行骨钻孔任务导航,研究了这种系统的可行性。将植入物模型与计算机断层扫描(CT)扫描结果进行比对后,根据固定钉的位置确定术前计划。使用高精度光学跟踪系统对导航精度进行量化。钻孔误差在平移时为 7.88 $\pm$ 2.41 mm,在定位时为 7.36 $\pm$ 1.77${}^{boldsymbol{\circ}}$。这些结果证明了将人工智能和 AR 技术整合到膝关节手术导航中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1