Hedge-Embedded Linguistic Fuzzy Neural Networks for Systems Identification and Control

Hamed Rafiei;Mohammad-R. Akbarzadeh-T.
{"title":"Hedge-Embedded Linguistic Fuzzy Neural Networks for Systems Identification and Control","authors":"Hamed Rafiei;Mohammad-R. Akbarzadeh-T.","doi":"10.1109/TAI.2024.3395416","DOIUrl":null,"url":null,"abstract":"In the realm of natural language processing, hedge-embedded structures have contributed considerably by appreciating linguistic variables and distinguishing overlapped classes. This aspect of natural languages considerably affects the building of linguistically interpretable architectures for fuzzy neural networks (FNNs). Here, we propose extending the idea of hedge-embedded linguistic fuzzy neural networks (LiFNNs) to the systems identification and control paradigm. This perspective leads us to the universal approximation property for this mathematical construct using the Stone–Weierstrass theorem and the proof of stability for the resulting nonlinear system identification process using the Lyapunov function. Furthermore, the power activation functions in the membership degrees of the proposed network enable linguistic hedge interpretation and more precise learning. Finally, the proposed LiFNN, optimized using a backpropagation learning algorithm, is evaluated on several problems in function approximation (periodic functions and quadratic Hermite function), system identification (a nonlinear system), and direct adaptive control fields. Results show that memberships are more distinguishable in the proposed LiFNN, leading to \n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n50% less error on the average and higher granulation and interpretability.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 10","pages":"4928-4937"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10510880/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of natural language processing, hedge-embedded structures have contributed considerably by appreciating linguistic variables and distinguishing overlapped classes. This aspect of natural languages considerably affects the building of linguistically interpretable architectures for fuzzy neural networks (FNNs). Here, we propose extending the idea of hedge-embedded linguistic fuzzy neural networks (LiFNNs) to the systems identification and control paradigm. This perspective leads us to the universal approximation property for this mathematical construct using the Stone–Weierstrass theorem and the proof of stability for the resulting nonlinear system identification process using the Lyapunov function. Furthermore, the power activation functions in the membership degrees of the proposed network enable linguistic hedge interpretation and more precise learning. Finally, the proposed LiFNN, optimized using a backpropagation learning algorithm, is evaluated on several problems in function approximation (periodic functions and quadratic Hermite function), system identification (a nonlinear system), and direct adaptive control fields. Results show that memberships are more distinguishable in the proposed LiFNN, leading to $\sim$ 50% less error on the average and higher granulation and interpretability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于系统识别和控制的绿篱嵌入式语言模糊神经网络
在自然语言处理领域,对冲嵌入式结构通过理解语言变量和区分重叠类别做出了巨大贡献。自然语言的这一特点极大地影响了模糊神经网络(FNN)语言可解释架构的构建。在此,我们建议将对冲嵌入式语言模糊神经网络(LiFNN)的理念扩展到系统识别和控制范例中。从这一角度出发,我们利用 Stone-Weierstrass 定理得出了这一数学结构的通用近似属性,并利用 Lyapunov 函数证明了由此产生的非线性系统识别过程的稳定性。此外,拟议网络成员度中的幂激活函数可实现语言对冲解释和更精确的学习。最后,利用反向传播学习算法优化的拟议 LiFNN 在函数逼近(周期函数和二次赫米特函数)、系统识别(非线性系统)和直接自适应控制领域的几个问题上进行了评估。结果表明,提议的 LiFNN 中的成员更容易区分,平均误差减少了 50%,颗粒度和可解释性更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1