CS-Mixer: A Cross-Scale Vision Multilayer Perceptron With Spatial–Channel Mixing

Jonathan Cui;David A. Araujo;Suman Saha;Md Faisal Kabir
{"title":"CS-Mixer: A Cross-Scale Vision Multilayer Perceptron With Spatial–Channel Mixing","authors":"Jonathan Cui;David A. Araujo;Suman Saha;Md Faisal Kabir","doi":"10.1109/TAI.2024.3415551","DOIUrl":null,"url":null,"abstract":"Despite simpler architectural designs compared with vision transformers (ViTs) and convolutional neural networks, vision multilayer perceptrons (MLPs) have demonstrated strong performance and high data efficiency for image classification and semantic segmentation. Following pioneering works such as MLP-Mixers and gMLPs, later research proposed a plethora of vision MLP architectures that achieve token-mixing with specifically engineered convolution- or attentionlike mechanisms. However, existing methods such as \n<inline-formula><tex-math>$\\text{S}^{\\text{2}}$</tex-math></inline-formula>\n-MLPs and PoolFormers typically model spatial information in equal-sized spatial regions and do not consider cross-scale spatial interactions, thus delivering subpar performance compared with transformer models that employ global token mixing. Further, these MLP token-mixers, along with most ViTs, only model one- or two-axis correlations among space and channels, avoiding simultaneous three-axis spatial–channel mixing due to its computational demands. We, therefore, propose CS-Mixer, a hierarchical vision MLP that learns dynamic low-rank transformations for tokens aggregated across scales, both locally and globally. Such aggregation allows for token-mixing that explicitly models spatial–channel interactions, made computationally possible by a multihead design that projects to low-dimensional subspaces. The proposed methodology achieves competitive results on popular image recognition benchmarks without incurring substantially more computing. Our largest model, CS-Mixer-L, reaches 83.2% top-1 accuracy on ImageNet-1k with 13.7 GFLOPs and 94 M parameters.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 10","pages":"4915-4927"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10562192/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite simpler architectural designs compared with vision transformers (ViTs) and convolutional neural networks, vision multilayer perceptrons (MLPs) have demonstrated strong performance and high data efficiency for image classification and semantic segmentation. Following pioneering works such as MLP-Mixers and gMLPs, later research proposed a plethora of vision MLP architectures that achieve token-mixing with specifically engineered convolution- or attentionlike mechanisms. However, existing methods such as $\text{S}^{\text{2}}$ -MLPs and PoolFormers typically model spatial information in equal-sized spatial regions and do not consider cross-scale spatial interactions, thus delivering subpar performance compared with transformer models that employ global token mixing. Further, these MLP token-mixers, along with most ViTs, only model one- or two-axis correlations among space and channels, avoiding simultaneous three-axis spatial–channel mixing due to its computational demands. We, therefore, propose CS-Mixer, a hierarchical vision MLP that learns dynamic low-rank transformations for tokens aggregated across scales, both locally and globally. Such aggregation allows for token-mixing that explicitly models spatial–channel interactions, made computationally possible by a multihead design that projects to low-dimensional subspaces. The proposed methodology achieves competitive results on popular image recognition benchmarks without incurring substantially more computing. Our largest model, CS-Mixer-L, reaches 83.2% top-1 accuracy on ImageNet-1k with 13.7 GFLOPs and 94 M parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CS-Mixer:具有空间通道混合功能的跨尺度视觉多层感知器
尽管与视觉变换器(ViT)和卷积神经网络相比,视觉多层感知器(MLP)的架构设计较为简单,但在图像分类和语义分割方面却表现出很强的性能和很高的数据效率。继 MLP-Mixers 和 gMLPs 等开创性研究之后,后来的研究提出了大量视觉 MLP 架构,通过专门设计的卷积或类似注意力的机制实现标记混合。然而,$\text{S}^{text{2}}$-MLP 和 PoolFormers 等现有方法通常是在大小相等的空间区域中对空间信息进行建模,并不考虑跨尺度空间交互,因此与采用全局标记混合的变换器模型相比,其性能并不理想。此外,这些 MLP 令牌混合器和大多数 ViT 都只对空间和通道之间的一轴或两轴相关性建模,避免了三轴空间通道同时混合,因为这对计算要求很高。因此,我们提出了 CS-Mixer,它是一种分层视觉 MLP,可在局部和全局范围内学习令牌聚合的动态低阶变换。这种聚合可以实现标记混合,明确模拟空间通道的相互作用,通过多头设计投射到低维子空间,在计算上成为可能。所提出的方法在流行的图像识别基准上取得了极具竞争力的结果,而无需大幅增加计算量。我们最大的模型 CS-Mixer-L 在 ImageNet-1k 上达到了 83.2% 的 top-1 准确率,需要 13.7 GFLOPs 和 94 M 个参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1