Hybrid Intelligent Optimization of Nonlinear Switched Systems With Guaranteed Feasibility

Huan Li;Jun Fu;Tianyou Chai
{"title":"Hybrid Intelligent Optimization of Nonlinear Switched Systems With Guaranteed Feasibility","authors":"Huan Li;Jun Fu;Tianyou Chai","doi":"10.1109/TAI.2024.3408130","DOIUrl":null,"url":null,"abstract":"To address the challenge of \n<italic>globally</i>\n optimal control of path-constrained switched systems, a hybrid intelligent dynamic optimization method is proposed by combining the biobjective particle swarm optimization (PSO) method and a gradient descent method, which simultaneously obtains globally optimal switching instants and input and guarantees rigorous satisfaction of the path constraints over the continuous time horizon. First, the path constraint of switched systems is discretized into multiple point constraints, and then the right-hand side of the path constraint (\n<inline-formula><tex-math>$\\leq 0$</tex-math></inline-formula>\n) is substituted with a negative value (\n<inline-formula><tex-math>$\\leq-\\varepsilon$</tex-math></inline-formula>\n). Second, the single-objective constrained dynamic program of switched systems is transformed into a biobjective unconstrained dynamic program where each particle intelligently adjusts its objectives to detect the global optimum area satisfying the constraints, depending on its current position in the search space by the search mechanism of PSO. Third, the deterministic optimization method is deployed in the detected global optimum area to locate a feasible solution satisfying the Karush–Kuhn–Tucker (KKT) conditions to a specified tolerance of dynamic optimization of switched systems. Moreover, it is proved that the hybrid intelligent dynamic optimization method can obtain the optimal solution satisfying the first-order approximation KKT conditions within a finite number of iterations. Finally, the results of numerical simulations show the effectiveness of the presented method in terms of improving the solution accuracy and guaranteeing rigorous satisfaction of the path constraint.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10543181/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenge of globally optimal control of path-constrained switched systems, a hybrid intelligent dynamic optimization method is proposed by combining the biobjective particle swarm optimization (PSO) method and a gradient descent method, which simultaneously obtains globally optimal switching instants and input and guarantees rigorous satisfaction of the path constraints over the continuous time horizon. First, the path constraint of switched systems is discretized into multiple point constraints, and then the right-hand side of the path constraint ( $\leq 0$ ) is substituted with a negative value ( $\leq-\varepsilon$ ). Second, the single-objective constrained dynamic program of switched systems is transformed into a biobjective unconstrained dynamic program where each particle intelligently adjusts its objectives to detect the global optimum area satisfying the constraints, depending on its current position in the search space by the search mechanism of PSO. Third, the deterministic optimization method is deployed in the detected global optimum area to locate a feasible solution satisfying the Karush–Kuhn–Tucker (KKT) conditions to a specified tolerance of dynamic optimization of switched systems. Moreover, it is proved that the hybrid intelligent dynamic optimization method can obtain the optimal solution satisfying the first-order approximation KKT conditions within a finite number of iterations. Finally, the results of numerical simulations show the effectiveness of the presented method in terms of improving the solution accuracy and guaranteeing rigorous satisfaction of the path constraint.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性开关系统的混合智能优化与可行性保证
为了解决路径约束切换系统的全局最优控制难题,本文提出了一种混合智能动态优化方法,该方法结合了生物目标粒子群优化(PSO)方法和梯度下降方法,可同时获得全局最优的切换时刻和输入,并保证在连续时间范围内严格满足路径约束。首先,将切换系统的路径约束离散化为多个点约束,然后用负值($\leq-\varepsilon$)代替路径约束的右侧($\leq 0$)。其次,将开关系统的单目标约束动态程序转化为生物目标无约束动态程序,每个粒子根据其在搜索空间中的当前位置,通过 PSO 的搜索机制智能地调整其目标,以检测满足约束条件的全局最优区域。第三,在检测到的全局最优区域内部署确定性优化方法,以找到满足卡鲁什-库恩-塔克(KKT)条件的可行解,达到开关系统动态优化的指定容差。此外,还证明了混合智能动态优化方法可以在有限的迭代次数内获得满足一阶近似 KKT 条件的最优解。最后,数值模拟结果表明,所提出的方法在提高求解精度和保证严格满足路径约束方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1