A Gecko-Inspired Robot Using Novel Variable-Stiffness Adhesive Paw Can Climb on Rough/Smooth Surfaces in Microgravity

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-09-22 DOI:10.1002/aisy.202400043
Zhiwei Yu, Xiaofeng Xu, Benhua Zhao, Jiahui Fu, Linfeng Wang, Zhouyi Wang, Chengguang Fan, Simon X. Yang, Aihong Ji
{"title":"A Gecko-Inspired Robot Using Novel Variable-Stiffness Adhesive Paw Can Climb on Rough/Smooth Surfaces in Microgravity","authors":"Zhiwei Yu,&nbsp;Xiaofeng Xu,&nbsp;Benhua Zhao,&nbsp;Jiahui Fu,&nbsp;Linfeng Wang,&nbsp;Zhouyi Wang,&nbsp;Chengguang Fan,&nbsp;Simon X. Yang,&nbsp;Aihong Ji","doi":"10.1002/aisy.202400043","DOIUrl":null,"url":null,"abstract":"<p>Space-wall-climbing robots face the challenge of stably attaching to and moving on spacecraft surfaces, which include smooth flat areas and rough intricate surfaces. Although adhesion-based wall-climbing robots demonstrate stable climbing on smooth surfaces in outer space, there is scarce research on their stable adhesion on rough surfaces within a microgravity environment. A novel adhesive material is developed inspired by the adhesion mechanism and locomotion of the <i>Gekko</i> gecko. This material exhibits exceptional adhesion across various materials and surface roughness. A variable-stiffness gecko-inspired paw is engineered, generating substantial adhesion forces while minimizing detachment forces. Impressively, this paw generates up to 180 N of adhesion force on smooth surfaces and achieves detachment without external forces. By integrating such variable-stiffness paws with a wall-climbing robot, a gecko-inspired robot effectively operating in a microgravity environment is created. The robotic satellite surface climbing experiments and robotic satellite capture experiments are conducted using a simulated microgravity environment and a satellite model. The results unequivocally demonstrate the gecko-inspired robot's proficiency in executing various functions, including stable motion and capture on both smooth and rough spacecraft surfaces within a microgravity environment. These experiments underscore the potential of adhesion-based gecko-inspired robots for in-orbit services and spacecraft capture and recovery.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 10","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Space-wall-climbing robots face the challenge of stably attaching to and moving on spacecraft surfaces, which include smooth flat areas and rough intricate surfaces. Although adhesion-based wall-climbing robots demonstrate stable climbing on smooth surfaces in outer space, there is scarce research on their stable adhesion on rough surfaces within a microgravity environment. A novel adhesive material is developed inspired by the adhesion mechanism and locomotion of the Gekko gecko. This material exhibits exceptional adhesion across various materials and surface roughness. A variable-stiffness gecko-inspired paw is engineered, generating substantial adhesion forces while minimizing detachment forces. Impressively, this paw generates up to 180 N of adhesion force on smooth surfaces and achieves detachment without external forces. By integrating such variable-stiffness paws with a wall-climbing robot, a gecko-inspired robot effectively operating in a microgravity environment is created. The robotic satellite surface climbing experiments and robotic satellite capture experiments are conducted using a simulated microgravity environment and a satellite model. The results unequivocally demonstrate the gecko-inspired robot's proficiency in executing various functions, including stable motion and capture on both smooth and rough spacecraft surfaces within a microgravity environment. These experiments underscore the potential of adhesion-based gecko-inspired robots for in-orbit services and spacecraft capture and recovery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受壁虎启发的机器人使用新型可变刚度粘合剂爪,可在微重力条件下在粗糙/光滑表面上攀爬
太空爬壁机器人面临着在航天器表面稳定附着和移动的挑战,这些表面包括光滑的平面区域和粗糙复杂的表面。虽然基于粘附力的爬壁机器人在外太空光滑表面上表现出稳定的爬行能力,但在微重力环境下粗糙表面上的稳定粘附力研究却很少。受壁虎的粘附机制和运动方式启发,我们开发了一种新型粘附材料。这种材料在各种材料和表面粗糙度上都表现出卓越的粘附性。受壁虎启发而设计的可变刚度爪可产生巨大的粘附力,同时将脱离力降至最低。令人印象深刻的是,这种爪子能在光滑表面上产生高达 180 牛顿的粘附力,并在没有外力的情况下实现脱离。通过将这种可变刚度的爪子与爬墙机器人集成,一个受壁虎启发的机器人就诞生了,它可以在微重力环境下有效地工作。利用模拟微重力环境和卫星模型进行了机器人卫星表面攀爬实验和机器人卫星捕获实验。实验结果清楚地表明,受壁虎启发的机器人能够熟练地执行各种功能,包括在微重力环境中的光滑和粗糙航天器表面上稳定运动和捕捉。这些实验强调了基于附着力的壁虎启发机器人在在轨服务以及航天器捕获和回收方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1