Bimetal anchoring porous MXene nanosheets for driving tandem catalytic high‐efficiency electrochemical nitrate reduction

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-10-17 DOI:10.1002/aic.18628
Rongyu Guo, Zhijie Cui, Tianyang Yu, Jing Li, Wenchao Peng, Jiapeng Liu
{"title":"Bimetal anchoring porous MXene nanosheets for driving tandem catalytic high‐efficiency electrochemical nitrate reduction","authors":"Rongyu Guo, Zhijie Cui, Tianyang Yu, Jing Li, Wenchao Peng, Jiapeng Liu","doi":"10.1002/aic.18628","DOIUrl":null,"url":null,"abstract":"Electrochemical nitrate reduction reaction (NO<jats:sub>3</jats:sub>RR) is considered a promising strategy for ammonia synthesis and nitrate removal, in which catalyst development is crucial. Herein, a series of bimetal (Co and Cu) anchoring porous MXene nanosheets (Co<jats:sub>x</jats:sub>Cu<jats:sub>y</jats:sub>@PM) catalysts were prepared by combining etching and reduction strategy. On the one hand, Cu and Co bimetals provided tandem catalytic active sites for NO<jats:sub>3</jats:sub>RR. On the other hand, the in‐plane PM exhibited good electrical conductivity and multiple transport pathways. Consequently, the optimized Co<jats:sub>7</jats:sub>Cu<jats:sub>3</jats:sub>@PM catalyst achieved a high ammonia yield of 7.43 mg h<jats:sup>−1</jats:sup> mg cat.<jats:sup>−1</jats:sup> and an excellent Faraday efficiency (FE) of 95.9%. The mechanism of NO<jats:sub>3</jats:sub>RR was investigated by analyzing electrolysis products and in situ Fourier transform infrared spectroscopy. Furthermore, the Co<jats:sub>7</jats:sub>Cu<jats:sub>3</jats:sub>@PM based ZnNO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> battery exhibited the superior power density of 5.59 mW cm<jats:sup>−2</jats:sup> and an NH<jats:sub>3</jats:sub> FE of 92.3%. This work presents an effective strategy to design MXene‐based high‐performance NO<jats:sub>3</jats:sub>RR electrocatalysts.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"73 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18628","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical nitrate reduction reaction (NO3RR) is considered a promising strategy for ammonia synthesis and nitrate removal, in which catalyst development is crucial. Herein, a series of bimetal (Co and Cu) anchoring porous MXene nanosheets (CoxCuy@PM) catalysts were prepared by combining etching and reduction strategy. On the one hand, Cu and Co bimetals provided tandem catalytic active sites for NO3RR. On the other hand, the in‐plane PM exhibited good electrical conductivity and multiple transport pathways. Consequently, the optimized Co7Cu3@PM catalyst achieved a high ammonia yield of 7.43 mg h−1 mg cat.−1 and an excellent Faraday efficiency (FE) of 95.9%. The mechanism of NO3RR was investigated by analyzing electrolysis products and in situ Fourier transform infrared spectroscopy. Furthermore, the Co7Cu3@PM based ZnNO3 battery exhibited the superior power density of 5.59 mW cm−2 and an NH3 FE of 92.3%. This work presents an effective strategy to design MXene‐based high‐performance NO3RR electrocatalysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
驱动串联催化高效电化学硝酸盐还原的双金属锚定多孔 MXene 纳米片
电化学硝酸盐还原反应(NO3RR)被认为是合成氨和去除硝酸盐的一种有前途的策略,其中催化剂的开发至关重要。在此,我们结合蚀刻和还原策略制备了一系列双金属(Co 和 Cu)锚定多孔 MXene 纳米片(CoxCuy@PM)催化剂。一方面,Cu 和 Co 双金属为 NO3RR 提供了串联催化活性位点。另一方面,面内 PM 具有良好的导电性和多种传输途径。因此,优化的 Co7Cu3@PM 催化剂实现了 7.43 mg h-1 mg cat.-1 的高氨产量和 95.9% 的出色法拉第效率(FE)。通过分析电解产物和原位傅立叶变换红外光谱,研究了 NO3RR 的机理。此外,基于 Co7Cu3@PM 的 ZnNO3- 电池显示出 5.59 mW cm-2 的超高功率密度和 92.3% 的 NH3 FE。这项工作为设计基于 MXene 的高性能 NO3RR 电催化剂提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Dynamic optimization of proton exchange membrane water electrolyzers considering usage-based degradation Optimal design of hydrogen-blended natural gas pipeline network considering separation systems Self-tuning moving horizon estimation of nonlinear systems via physics-informed machine learning Koopman modeling An experimental study of pressure drop characteristics under single-phase flow through packed bed microreactors Anatase-reinforced PtZn@Silicalite-1 structured catalysts boosting propane dehydrogenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1