Variations in the Inferred Cosmic-Ray Spectral Index as Measured by Neutron Monitors in Antarctica

Pradiphat Muangha, David Ruffolo, Alejandro Sáiz, Chanoknan Banglieng, Paul Evenson, Surujhdeo Seunarine, Suyeon Oh, Jongil Jung, Marc L. Duldig and John E. Humble
{"title":"Variations in the Inferred Cosmic-Ray Spectral Index as Measured by Neutron Monitors in Antarctica","authors":"Pradiphat Muangha, David Ruffolo, Alejandro Sáiz, Chanoknan Banglieng, Paul Evenson, Surujhdeo Seunarine, Suyeon Oh, Jongil Jung, Marc L. Duldig and John E. Humble","doi":"10.3847/1538-4357/ad73d6","DOIUrl":null,"url":null,"abstract":"A technique has recently been developed for tracking short-term spectral variations in Galactic cosmic rays (GCRs) using data from a single neutron monitor (NM), by collecting histograms of the time delay between successive neutron counts and extracting the leader fraction L as a proxy of the spectral index. Here we analyze L from four Antarctic NMs from 2015 March to 2023 September. We have calibrated L from the South Pole NM with respect to a daily spectral index determined from published data of GCR proton fluxes during 2015–2019 from the Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station. Our results demonstrate a robust correlation between the leader fraction and the spectral index fit over the rigidity range 2.97–16.6 GV for AMS-02 data, with uncertainty of 0.018 in the daily spectral index as inferred from L. In addition to the 11 yr solar activity cycle, a wavelet analysis confirms a 27 day periodicity in the GCR flux and spectral index corresponding to solar rotation, especially near sunspot minimum, while the flux occasionally exhibits a strong harmonic at 13.5 days. The magnetic field component along a nominal Parker spiral (i.e., the magnetic sector structure) is a strong determinant of such spectral and flux variations, with the solar wind speed exerting an additional, nearly rigidity-independent influence on flux variations. Our investigation affirms the capability of ground-based NM stations to accurately and continuously monitor cosmic-ray spectral variations over the long-term future.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad73d6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A technique has recently been developed for tracking short-term spectral variations in Galactic cosmic rays (GCRs) using data from a single neutron monitor (NM), by collecting histograms of the time delay between successive neutron counts and extracting the leader fraction L as a proxy of the spectral index. Here we analyze L from four Antarctic NMs from 2015 March to 2023 September. We have calibrated L from the South Pole NM with respect to a daily spectral index determined from published data of GCR proton fluxes during 2015–2019 from the Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station. Our results demonstrate a robust correlation between the leader fraction and the spectral index fit over the rigidity range 2.97–16.6 GV for AMS-02 data, with uncertainty of 0.018 in the daily spectral index as inferred from L. In addition to the 11 yr solar activity cycle, a wavelet analysis confirms a 27 day periodicity in the GCR flux and spectral index corresponding to solar rotation, especially near sunspot minimum, while the flux occasionally exhibits a strong harmonic at 13.5 days. The magnetic field component along a nominal Parker spiral (i.e., the magnetic sector structure) is a strong determinant of such spectral and flux variations, with the solar wind speed exerting an additional, nearly rigidity-independent influence on flux variations. Our investigation affirms the capability of ground-based NM stations to accurately and continuously monitor cosmic-ray spectral variations over the long-term future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
南极洲中子监测器测量到的推断宇宙射线光谱指数的变化
最近开发了一种利用单个中子监测器(NM)的数据跟踪银河宇宙射线(GCR)短期光谱变化的技术,方法是收集连续中子计数之间的时间延迟直方图,并提取领导分数 L 作为光谱指数的替代值。在此,我们分析了 2015 年 3 月至 2023 年 9 月期间四个南极中子监测器的 L。我们根据国际空间站上阿尔法磁谱仪(AMS-02)公布的 2015-2019 年期间 GCR 质子通量数据确定的每日光谱指数,对南极 NM 的 L 进行了校准。我们的结果表明,在 AMS-02 数据的刚度范围 2.97-16.6 GV 内,领导者分量与光谱指数拟合之间存在稳健的相关性,根据 L 推断出的日光谱指数的不确定性为 0.018。除了 11 年的太阳活动周期外,小波分析还证实了 GCR 通量和光谱指数与太阳自转相对应的 27 天周期性,尤其是在太阳黑子最小值附近,而通量偶尔会在 13.5 天处表现出强烈的谐波。沿标称帕克螺旋的磁场分量(即磁扇区结构)是这种光谱和磁通量变化的重要决定因素,太阳风速度对磁通量变化产生了额外的、几乎与刚性无关的影响。我们的调查证实了地基 NM 站在未来长期准确和持续监测宇宙射线光谱变化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultraviolet Flux and Spectral Variability Study of Blazars Observed with UVIT/AstroSat The Peculiar Disk Evolution of 4U 1630-472 Observed by Insight-HXMT During its 2022 and 2023 Outbursts Stellar Metallicities and Gradients in the Faint M31 Satellites Andromeda XVI and Andromeda XXVIII Tidal Spin-up of Subdwarf B Stars Numerical Experiment on the Influence of Granulation-induced Waves on Solar Chromosphere Heating and Plasma Outflows in a Magnetic Arcade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1