Binh An Nguyen, Shumaila Afrin, Anna Yakubovska, Virender Singh, Rose Pedretti, Parker Bassett, Maja Pekala, Jaime Vaquer Alicea, Peter Kunach, Lanie Wang, Andrew Lemoff, Barbara Kluve-Beckerman, Lorena Saelices
{"title":"ATTRv-V30M amyloid fibrils from heart and nerves exhibit structural homogeneity","authors":"Binh An Nguyen, Shumaila Afrin, Anna Yakubovska, Virender Singh, Rose Pedretti, Parker Bassett, Maja Pekala, Jaime Vaquer Alicea, Peter Kunach, Lanie Wang, Andrew Lemoff, Barbara Kluve-Beckerman, Lorena Saelices","doi":"10.1016/j.str.2024.09.021","DOIUrl":null,"url":null,"abstract":"Amyloidogenic transthyretin (ATTR) amyloidosis is a systemic disease characterized by the deposition of amyloid fibrils made of transthyretin. Transthyretin is primarily produced in tetrameric form by the liver, but also by retinal epithelium and choroid plexus. The deposition of these fibrils in the myocardium and peripheral nerves causes cardiomyopathies and neuropathies, respectively. Using cryoelectron microscopy (cryo-EM), we investigated fibrils extracted from cardiac and nerve tissues of an ATTRv-V30M patient. We found consistent fibril structures from both tissues, similar to cardiac fibrils previously described, but different from vitreous humor fibrils of the same genotype. Our findings, along with previous ATTR fibrils structural studies, suggest a uniform fibrillar architecture across different tissues when transthyretin originates from the liver. This study advances our understanding of how deposition and production sites influence fibril structure in ATTRv-V30M amyloidosis.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"32 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.09.021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloidogenic transthyretin (ATTR) amyloidosis is a systemic disease characterized by the deposition of amyloid fibrils made of transthyretin. Transthyretin is primarily produced in tetrameric form by the liver, but also by retinal epithelium and choroid plexus. The deposition of these fibrils in the myocardium and peripheral nerves causes cardiomyopathies and neuropathies, respectively. Using cryoelectron microscopy (cryo-EM), we investigated fibrils extracted from cardiac and nerve tissues of an ATTRv-V30M patient. We found consistent fibril structures from both tissues, similar to cardiac fibrils previously described, but different from vitreous humor fibrils of the same genotype. Our findings, along with previous ATTR fibrils structural studies, suggest a uniform fibrillar architecture across different tissues when transthyretin originates from the liver. This study advances our understanding of how deposition and production sites influence fibril structure in ATTRv-V30M amyloidosis.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.