Tao Wen , Yu-Hua Yao , Song-Zhan Chen , Ben-Zhong Dai , Yi-Qing Guo
{"title":"A universal energy relation between synchrotron and synchrotron self-Compton radiation in GRBs and blazars","authors":"Tao Wen , Yu-Hua Yao , Song-Zhan Chen , Ben-Zhong Dai , Yi-Qing Guo","doi":"10.1016/j.jheap.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>The recent and brightest GRB 221009A observed by LHAASO marked the first detection of the onset of TeV afterglow, with a total of 7 GRBs exhibiting very high energy (VHE) afterglow radiation. However, consensus on VHE radiation of GRBs is still lacking. Multi-wavelength studies are currently a primary research method for investigating high-energy <em>γ</em>-ray astronomy. The limited sample of VHE GRBs, combined with their transient nature, hinders the progress of physical studies of GRBs. This paper aims to obtain useful information for GRB research through the properties of blazars, which share significant similarities with GRBs. By fitting high-quality and simultaneous multiwavelength spectral energy distributions with a one-zone leptonic model, the study explores the similarity of radiation properties of blazars and GRBs. A tight correlation between synchrotron and synchrotron self-Compton (SSC) emission luminosities suggests that blazars and GRBs share similar radiation mechanisms, to be specific, synchrotron radiation produces the observed X-ray photons, which also serve as targets for electrons in the SSC process. We hope that ground-based experiments can observe more GRBs in sub-TeV to confirm these findings.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 315-322"},"PeriodicalIF":10.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824001034","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The recent and brightest GRB 221009A observed by LHAASO marked the first detection of the onset of TeV afterglow, with a total of 7 GRBs exhibiting very high energy (VHE) afterglow radiation. However, consensus on VHE radiation of GRBs is still lacking. Multi-wavelength studies are currently a primary research method for investigating high-energy γ-ray astronomy. The limited sample of VHE GRBs, combined with their transient nature, hinders the progress of physical studies of GRBs. This paper aims to obtain useful information for GRB research through the properties of blazars, which share significant similarities with GRBs. By fitting high-quality and simultaneous multiwavelength spectral energy distributions with a one-zone leptonic model, the study explores the similarity of radiation properties of blazars and GRBs. A tight correlation between synchrotron and synchrotron self-Compton (SSC) emission luminosities suggests that blazars and GRBs share similar radiation mechanisms, to be specific, synchrotron radiation produces the observed X-ray photons, which also serve as targets for electrons in the SSC process. We hope that ground-based experiments can observe more GRBs in sub-TeV to confirm these findings.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.