Yunbo Zhang , Wenjie Chen , Bingshu Huang , Zongran Zhang , Jie Li , Ruishan Gao , Ke Wang , Chuli Hu
{"title":"An event logic graph for geographic environment observation planning in disaster chain monitoring","authors":"Yunbo Zhang , Wenjie Chen , Bingshu Huang , Zongran Zhang , Jie Li , Ruishan Gao , Ke Wang , Chuli Hu","doi":"10.1016/j.jag.2024.104220","DOIUrl":null,"url":null,"abstract":"<div><div>Effective geographic environment observation planning is the key to obtain disaster monitoring and warning information. The previous researches can only make observation plans for a single disaster at some specific stages. They are difficult to apply to the dynamic evolution of the disaster chain. Timely and comprehensive geographic environment observation planning is urgently needed to provide high-value monitoring data for the identification and response of secondary disaster chains. Event logic graph (ELG) shows great potential in evolutionary law expression and chain event reasoning. Therefore, this study proposed an observation ELG (OELG), in which events and their logical relationships are modeled as nodes and edges to express the occurrence and development motivation of observation events. The disaster chain observation planning can be transformed into the reasoning of potential continuous observation events. Subsequently, an OELG-based geographic environment observation planning framework was proposed, which realizes the construction, instantiation, and plan reasoning of OELG. The observation planning experiment was carried out taking the flood disaster chain that occurred in Beijing, China and Nordrhein-Westfalen, Germany as examples. The results show that OELG can generate disaster chain observation plan more timely, comprehensively, and continuously than other models, thus providing support for disaster chain risk monitoring and emergency response.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104220"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Effective geographic environment observation planning is the key to obtain disaster monitoring and warning information. The previous researches can only make observation plans for a single disaster at some specific stages. They are difficult to apply to the dynamic evolution of the disaster chain. Timely and comprehensive geographic environment observation planning is urgently needed to provide high-value monitoring data for the identification and response of secondary disaster chains. Event logic graph (ELG) shows great potential in evolutionary law expression and chain event reasoning. Therefore, this study proposed an observation ELG (OELG), in which events and their logical relationships are modeled as nodes and edges to express the occurrence and development motivation of observation events. The disaster chain observation planning can be transformed into the reasoning of potential continuous observation events. Subsequently, an OELG-based geographic environment observation planning framework was proposed, which realizes the construction, instantiation, and plan reasoning of OELG. The observation planning experiment was carried out taking the flood disaster chain that occurred in Beijing, China and Nordrhein-Westfalen, Germany as examples. The results show that OELG can generate disaster chain observation plan more timely, comprehensively, and continuously than other models, thus providing support for disaster chain risk monitoring and emergency response.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.