Zhuhong Shao , Zuowei Zhang , Leding Li , Hailiang Li , Xuanyi Li , Bicao Li , Yuanyuan Shang , Bin Chen
{"title":"Pyramid quaternion discrete cosine transform based ConvNet for cancelable face recognition","authors":"Zhuhong Shao , Zuowei Zhang , Leding Li , Hailiang Li , Xuanyi Li , Bicao Li , Yuanyuan Shang , Bin Chen","doi":"10.1016/j.imavis.2024.105301","DOIUrl":null,"url":null,"abstract":"<div><div>The current <em>face scanning era</em> can quickly and conveniently attain identity authentication, but face images imply sensitive information simultaneously. Under such context, we introduce a novel cancelable face recognition methodology by using quaternion transform based convolutional network. Firstly, face images in different modalities (e.g., RGB and depth or near-infrared) are encoded into full quaternion matrix for synchronous processing. Based on the designed multiresolution quaternion singular value decomposition, we can obtain pyramid representation. Then they are transformed through random projection for making the process noninvertible. Even if the feature template is compromised, a new one can be generated. Subsequently, a three-stream convolutional network is developed to learn features, where predefined filters are stemmed from quaternion two-dimensional discrete cosine transform basis. Extensive experiments on the TIII-D, NVIE and CASIA datasets have demonstrated that the proposed method obtains competitive performance, also satisfies redistributable and irreversible.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"151 ","pages":"Article 105301"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004062","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The current face scanning era can quickly and conveniently attain identity authentication, but face images imply sensitive information simultaneously. Under such context, we introduce a novel cancelable face recognition methodology by using quaternion transform based convolutional network. Firstly, face images in different modalities (e.g., RGB and depth or near-infrared) are encoded into full quaternion matrix for synchronous processing. Based on the designed multiresolution quaternion singular value decomposition, we can obtain pyramid representation. Then they are transformed through random projection for making the process noninvertible. Even if the feature template is compromised, a new one can be generated. Subsequently, a three-stream convolutional network is developed to learn features, where predefined filters are stemmed from quaternion two-dimensional discrete cosine transform basis. Extensive experiments on the TIII-D, NVIE and CASIA datasets have demonstrated that the proposed method obtains competitive performance, also satisfies redistributable and irreversible.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.