Thermal creep strain test and model of Q460GJ steel at elevated temperatures

IF 4 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Constructional Steel Research Pub Date : 2024-10-16 DOI:10.1016/j.jcsr.2024.109082
Aibing Li , Siqi Li , Shan-Shan Huang , Weiyong Wang
{"title":"Thermal creep strain test and model of Q460GJ steel at elevated temperatures","authors":"Aibing Li ,&nbsp;Siqi Li ,&nbsp;Shan-Shan Huang ,&nbsp;Weiyong Wang","doi":"10.1016/j.jcsr.2024.109082","DOIUrl":null,"url":null,"abstract":"<div><div>Q460GJ steel is a typical high strength and high-performance structural steel. The thermal creep test on two thicknesses (8 mm and 12 mm) of Q460GJ steel plates at elevated temperatures (400–800 °C) was carried out. The test results showed that the thermal creep strain increases with the increases of temperature and stress. When the temperature exceeds about 500 °C and the stress ratio is greater than about 0.55, the Q460GJ steel plate specimens has obvious creep deformations, so it is necessary to consider the thermal creep deformation of steel at elevated temperatures for steel structural design. The difference in plate thickness does not affect the creep properties of the 8 mm and 12 mm Q460GJ steel plates at elevated temperatures. When the temperature is no more than 600 °C, the second stage creep strain rates of Q460 steel are obviously higher than that of Q460GJ steel while the stress levels are close. The Fields &amp; Fields creep model is suitable for fitting the thermal creep strain-time curves for Q460GJ steel. The findings will contribute to providing theoretical support for design of high-performance steel engineering structures under fire.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"223 ","pages":"Article 109082"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24006321","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Q460GJ steel is a typical high strength and high-performance structural steel. The thermal creep test on two thicknesses (8 mm and 12 mm) of Q460GJ steel plates at elevated temperatures (400–800 °C) was carried out. The test results showed that the thermal creep strain increases with the increases of temperature and stress. When the temperature exceeds about 500 °C and the stress ratio is greater than about 0.55, the Q460GJ steel plate specimens has obvious creep deformations, so it is necessary to consider the thermal creep deformation of steel at elevated temperatures for steel structural design. The difference in plate thickness does not affect the creep properties of the 8 mm and 12 mm Q460GJ steel plates at elevated temperatures. When the temperature is no more than 600 °C, the second stage creep strain rates of Q460 steel are obviously higher than that of Q460GJ steel while the stress levels are close. The Fields & Fields creep model is suitable for fitting the thermal creep strain-time curves for Q460GJ steel. The findings will contribute to providing theoretical support for design of high-performance steel engineering structures under fire.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Q460GJ 钢在高温下的热蠕变应变测试和模型
Q460GJ 钢是一种典型的高强度、高性能结构钢。在高温(400-800 °C)条件下,对两种厚度(8 毫米和 12 毫米)的 Q460GJ 钢板进行了热蠕变试验。试验结果表明,热蠕变应变随温度和应力的增加而增加。当温度超过约 500 ℃、应力比大于约 0.55 时,Q460GJ 钢板试样会产生明显的蠕变变形,因此在钢结构设计时有必要考虑钢在高温下的热蠕变变形。钢板厚度的不同不会影响 8 毫米和 12 毫米 Q460GJ 钢板在高温下的蠕变性能。当温度不超过 600 °C 时,Q460 钢的第二阶段蠕变应变率明显高于 Q460GJ 钢,而应力水平却很接近。Fields & Fields 蠕变模型适用于拟合 Q460GJ 钢的热蠕变应变时间曲线。研究结果将有助于为火灾下高性能钢结构工程设计提供理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Constructional Steel Research
Journal of Constructional Steel Research 工程技术-工程:土木
CiteScore
7.90
自引率
19.50%
发文量
550
审稿时长
46 days
期刊介绍: The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.
期刊最新文献
Retarding effect on cracked steel plates strengthened by Fe-SMA and steel sheets The development of a component-based model for extended endplate joints in fire-induced progressive collapse scenarios Seismic performance of the joint between unequal-depth steel beam and CFDST column In-plane stability behaviours of concrete-filled steel tubular catenary arches under different loading conditions Hysteretic behavior and design methods of concrete-filled double skin stainless steel tubular beam-columns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1