Paul Frutos , Juan Manuel Guerrero , Iker Muniategui , Aitor Endemaño , David Ortega , Fernando Briz
{"title":"Low-frequency oscillations in AC railway traction power systems: Train input admittance calculation and stability analysis","authors":"Paul Frutos , Juan Manuel Guerrero , Iker Muniategui , Aitor Endemaño , David Ortega , Fernando Briz","doi":"10.1016/j.ijepes.2024.110284","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic interactions among the AC railway power supply network and power electronic converters feeding the trains can result in low-frequency oscillation (LFO) of the catenary voltage, leading to a power outage of the substation and the shutdown of train traffic. To determine the low-frequency stability of the railway traction power systems, the impedance of the power supply network and the total differential admittance of the trains are required. This paper addresses the development of an analytical small-signal model of the train input admittance. For this purpose, small-signal models of each dynamic element involved are obtained. Specifically, the small-signal vector transformation from the actual <span><math><mrow><mi>d</mi><mi>q</mi></mrow></math></span>-frame to the estimated <span><math><mover><mrow><mi>d</mi><mi>q</mi></mrow><mrow><mo>̂</mo></mrow></mover></math></span>-frame is presented to model the dynamics due to errors in the coordinate rotation of the single-phase four-quadrant converter (4QC) control system. Furthermore, the quadrature signal generator second-order generalized integrator (QSG-SOGI) model is calculated in the synchronous frame. The developed admittance model is intended to accurately predict various types of instabilities and serve as a powerful tool for conducting sensitivity analyses. The validation of the proposed models will be carried out through numerical simulations involving the power supply network and train systems.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110284"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005064","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic interactions among the AC railway power supply network and power electronic converters feeding the trains can result in low-frequency oscillation (LFO) of the catenary voltage, leading to a power outage of the substation and the shutdown of train traffic. To determine the low-frequency stability of the railway traction power systems, the impedance of the power supply network and the total differential admittance of the trains are required. This paper addresses the development of an analytical small-signal model of the train input admittance. For this purpose, small-signal models of each dynamic element involved are obtained. Specifically, the small-signal vector transformation from the actual -frame to the estimated -frame is presented to model the dynamics due to errors in the coordinate rotation of the single-phase four-quadrant converter (4QC) control system. Furthermore, the quadrature signal generator second-order generalized integrator (QSG-SOGI) model is calculated in the synchronous frame. The developed admittance model is intended to accurately predict various types of instabilities and serve as a powerful tool for conducting sensitivity analyses. The validation of the proposed models will be carried out through numerical simulations involving the power supply network and train systems.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.