Structural design and crashworthiness analysis of axial cutting coupled radial extrusion tube

IF 4 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Constructional Steel Research Pub Date : 2024-10-16 DOI:10.1016/j.jcsr.2024.109079
Suchao Xie , Zinan Liu , Hao Wang , Kunkun Jing , Guandi He
{"title":"Structural design and crashworthiness analysis of axial cutting coupled radial extrusion tube","authors":"Suchao Xie ,&nbsp;Zinan Liu ,&nbsp;Hao Wang ,&nbsp;Kunkun Jing ,&nbsp;Guandi He","doi":"10.1016/j.jcsr.2024.109079","DOIUrl":null,"url":null,"abstract":"<div><div>In order to address the energy absorption (EA) issue caused by limited installation space, a circular tube EA structure with axial cutting coupled radial extrusion (ACCRE) deformation modes is proposed and constructed. The FE model of cutting and extrusion die, bottom plate, cross rib and circular tube was established. The accuracy of the FE model was verified by two repeated tests. Finally, the peak force was predicted by theoretical model. Under the influence of dies, the circular tube produces chips and grooves and exhibits multi-level EA characteristics, with specific EA of 43.38 kJ/kg and first and second order platform force of 107.53 kN and 515.22 kN. With a maximum error of only 6.78 %, the FE model and experimental data offer accurate simulations of deformation patterns, steady-state loads, and EA. The specific EA of the ACCRE tube is increased by 120.2 % and 223.7 %, respectively, when compared to the single deformation modes of cutting and extrusion. This finding indicates that the ACCRE deformation mode can adequately cause the tube to undergo plastic deformation, improve the material utilization rate to better EA effect.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"223 ","pages":"Article 109079"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24006291","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to address the energy absorption (EA) issue caused by limited installation space, a circular tube EA structure with axial cutting coupled radial extrusion (ACCRE) deformation modes is proposed and constructed. The FE model of cutting and extrusion die, bottom plate, cross rib and circular tube was established. The accuracy of the FE model was verified by two repeated tests. Finally, the peak force was predicted by theoretical model. Under the influence of dies, the circular tube produces chips and grooves and exhibits multi-level EA characteristics, with specific EA of 43.38 kJ/kg and first and second order platform force of 107.53 kN and 515.22 kN. With a maximum error of only 6.78 %, the FE model and experimental data offer accurate simulations of deformation patterns, steady-state loads, and EA. The specific EA of the ACCRE tube is increased by 120.2 % and 223.7 %, respectively, when compared to the single deformation modes of cutting and extrusion. This finding indicates that the ACCRE deformation mode can adequately cause the tube to undergo plastic deformation, improve the material utilization rate to better EA effect.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴向切割耦合径向挤压管的结构设计和耐撞性分析
为了解决有限安装空间造成的能量吸收(EA)问题,提出并构建了一种具有轴向切割耦合径向挤压(ACCRE)变形模式的圆管 EA 结构。建立了切割挤压模具、底板、横肋和圆管的 FE 模型。通过两次重复试验验证了 FE 模型的准确性。最后,通过理论模型预测了峰值力。在模具的影响下,圆管产生切屑和沟槽,并表现出多级 EA 特性,比 EA 为 43.38 kJ/kg,一阶和二阶平台力分别为 107.53 kN 和 515.22 kN。FE 模型和实验数据的最大误差仅为 6.78%,可精确模拟变形模式、稳态载荷和 EA。与切割和挤压的单一变形模式相比,ACCRE 管的比 EA 分别增加了 120.2 % 和 223.7 %。这一结果表明,ACCRE 变形模式能充分使管材发生塑性变形,提高材料利用率,达到更好的 EA 效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Constructional Steel Research
Journal of Constructional Steel Research 工程技术-工程:土木
CiteScore
7.90
自引率
19.50%
发文量
550
审稿时长
46 days
期刊介绍: The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.
期刊最新文献
Retarding effect on cracked steel plates strengthened by Fe-SMA and steel sheets The development of a component-based model for extended endplate joints in fire-induced progressive collapse scenarios Seismic performance of the joint between unequal-depth steel beam and CFDST column In-plane stability behaviours of concrete-filled steel tubular catenary arches under different loading conditions Hysteretic behavior and design methods of concrete-filled double skin stainless steel tubular beam-columns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1