{"title":"Exploring different dopant materials in conjunction with iron oxide and analyzing their characterization and magnetic properties","authors":"B. Arunkumar, M. Jothibas","doi":"10.1016/j.chemphys.2024.112477","DOIUrl":null,"url":null,"abstract":"<div><div>The comparative studies of pure and different doping materials of α-XFe<sub>2</sub>O<sub>3</sub> (X = Co, Mn, Ni and Zn) nanoparticles in Structural, Morphological, Optical, and magnetic behavior were analyzed in this article. The synthesis of α-XFe<sub>2</sub>O<sub>3</sub> nanoparticles through the Sol-gel method for magnetic properties with various doping materials such as Co, Mn, Ni, and Zn. The structural, morphological, optical, and magnetic properties were carefully examined, revealing enhanced characteristics. XRD studies confirmed the successful incorporation of dopants into the crystal structure of α-Fe<sub>2</sub>O<sub>3</sub>, while Morphological analysis through SEM images indicated superparamagnetic properties in Co and Zn doped samples, and ferrite behavior in Mn and Ni doped samples. UV Spectra analysis showed optical transitional changes related to magnetic behavior, and the dielectric effect was attributed to the presence of multiple domains within the sample. The study effectively demonstrated the unique magnetic properties of pure and α-XFe<sub>2</sub>O<sub>3</sub> nanoparticles, highlighting the importance of different doping materials in influencing their characteristics.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"588 ","pages":"Article 112477"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424003069","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The comparative studies of pure and different doping materials of α-XFe2O3 (X = Co, Mn, Ni and Zn) nanoparticles in Structural, Morphological, Optical, and magnetic behavior were analyzed in this article. The synthesis of α-XFe2O3 nanoparticles through the Sol-gel method for magnetic properties with various doping materials such as Co, Mn, Ni, and Zn. The structural, morphological, optical, and magnetic properties were carefully examined, revealing enhanced characteristics. XRD studies confirmed the successful incorporation of dopants into the crystal structure of α-Fe2O3, while Morphological analysis through SEM images indicated superparamagnetic properties in Co and Zn doped samples, and ferrite behavior in Mn and Ni doped samples. UV Spectra analysis showed optical transitional changes related to magnetic behavior, and the dielectric effect was attributed to the presence of multiple domains within the sample. The study effectively demonstrated the unique magnetic properties of pure and α-XFe2O3 nanoparticles, highlighting the importance of different doping materials in influencing their characteristics.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.