Tackling the curse of dimensionality in fractional and tempered fractional PDEs with physics-informed neural networks

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-10-18 DOI:10.1016/j.cma.2024.117448
Zheyuan Hu , Kenji Kawaguchi , Zhongqiang Zhang , George Em Karniadakis
{"title":"Tackling the curse of dimensionality in fractional and tempered fractional PDEs with physics-informed neural networks","authors":"Zheyuan Hu ,&nbsp;Kenji Kawaguchi ,&nbsp;Zhongqiang Zhang ,&nbsp;George Em Karniadakis","doi":"10.1016/j.cma.2024.117448","DOIUrl":null,"url":null,"abstract":"<div><div>Fractional and tempered fractional partial differential equations (PDEs) are effective models of long-range interactions, anomalous diffusion, and non-local effects. Traditional numerical methods for these problems are mesh-based, thus struggling with the curse of dimensionality (CoD). Physics-informed neural networks (PINNs) offer a promising solution due to their universal approximation, generalization ability, and mesh-free training. In principle, Monte Carlo fractional PINN (MC-fPINN) estimates fractional derivatives using Monte Carlo methods and thus could lift CoD. However, this may cause significant variance and errors, hence affecting convergence; in addition, MC-fPINN is sensitive to hyperparameters. In general, numerical methods and specifically PINNs for tempered fractional PDEs are under-developed. Herein, we extend MC-fPINN to tempered fractional PDEs to address these issues, resulting in the Monte Carlo tempered fractional PINN (MC-tfPINN). To reduce possible high variance and errors from Monte Carlo sampling, we replace the one-dimensional (1D) Monte Carlo with 1D Gaussian quadrature, applicable to both MC-fPINN and MC-tfPINN. We validate our methods on various forward and inverse problems of fractional and tempered fractional PDEs, scaling up to 100,000 dimensions. Our improved MC-fPINN/MC-tfPINN using quadrature consistently outperforms the original versions in accuracy and convergence speed in very high dimensions. Code is available at <span><span>https://github.com/zheyuanhu01/Tempered_Fractional_PINN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"432 ","pages":"Article 117448"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007035","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fractional and tempered fractional partial differential equations (PDEs) are effective models of long-range interactions, anomalous diffusion, and non-local effects. Traditional numerical methods for these problems are mesh-based, thus struggling with the curse of dimensionality (CoD). Physics-informed neural networks (PINNs) offer a promising solution due to their universal approximation, generalization ability, and mesh-free training. In principle, Monte Carlo fractional PINN (MC-fPINN) estimates fractional derivatives using Monte Carlo methods and thus could lift CoD. However, this may cause significant variance and errors, hence affecting convergence; in addition, MC-fPINN is sensitive to hyperparameters. In general, numerical methods and specifically PINNs for tempered fractional PDEs are under-developed. Herein, we extend MC-fPINN to tempered fractional PDEs to address these issues, resulting in the Monte Carlo tempered fractional PINN (MC-tfPINN). To reduce possible high variance and errors from Monte Carlo sampling, we replace the one-dimensional (1D) Monte Carlo with 1D Gaussian quadrature, applicable to both MC-fPINN and MC-tfPINN. We validate our methods on various forward and inverse problems of fractional and tempered fractional PDEs, scaling up to 100,000 dimensions. Our improved MC-fPINN/MC-tfPINN using quadrature consistently outperforms the original versions in accuracy and convergence speed in very high dimensions. Code is available at https://github.com/zheyuanhu01/Tempered_Fractional_PINN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用物理信息神经网络解决分数和节制分数 PDE 中的维度诅咒问题
分式和节制分式偏微分方程(PDE)是长程相互作用、反常扩散和非局部效应的有效模型。解决这些问题的传统数值方法以网格为基础,因此在维度诅咒(CoD)问题上举步维艰。物理信息神经网络(PINNs)因其普遍近似性、泛化能力和无网格训练而提供了一种有前途的解决方案。原则上,蒙特卡洛分数 PINN(MC-fPINN)使用蒙特卡洛方法估计分数导数,因此可以消除 CoD。然而,这可能会导致显著的方差和误差,从而影响收敛性;此外,MC-fPINN 对超参数很敏感。总体而言,针对有节制分式 PDE 的数值方法,特别是 PINN 还不够成熟。在此,我们将 MC-fPINN 扩展到回火分式 PDE,以解决这些问题,从而产生蒙特卡罗回火分式 PINN(MC-tfPINN)。为了减少蒙特卡洛采样可能产生的高方差和误差,我们用一维高斯正交代替了一维蒙特卡洛,适用于 MC-fPINN 和 MC-tfPINN。我们在分式和节制分式 PDEs 的各种正演和反演问题上验证了我们的方法,最多可扩展到 100,000 维。我们使用正交方法改进的 MC-fPINN/MC-tfPINN 在精度和收敛速度上始终优于超高维度的原始版本。代码见 https://github.com/zheyuanhu01/Tempered_Fractional_PINN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Evolutionary topology optimization with stress control for composite laminates using Tsai-Wu criterion A composite Bayesian optimisation framework for material and structural design Non-intrusive parametric hyper-reduction for nonlinear structural finite element formulations Parallel active learning reliability analysis: A multi-point look-ahead paradigm Neurodevelopmental disorders modeling using isogeometric analysis, dynamic domain expansion and local refinement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1