A. Rodríguez-López , B. Savoini , M.A. Monge , A. Galatanu , M. Galatanu
{"title":"Evaluation of thermal properties of CuCrFeV (Ti, Ta, W, Mo) for nuclear fusion applications","authors":"A. Rodríguez-López , B. Savoini , M.A. Monge , A. Galatanu , M. Galatanu","doi":"10.1016/j.nme.2024.101767","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates the influence of composition on the thermal properties of the high entropy alloy family Cu<sub>5</sub>Cr<sub>35</sub>Fe<sub>35</sub>V<sub>20</sub>-X<sub>5</sub> (at. %), where X = Ti, Ta, W or Mo in the framework of acting as a thermal barrier between the W-based plasma-facing elements and the CuCrZr or Cu-based heat sink components of the fusion reactor. The alloys were produced by arc melting and their microstructure and mechanical properties were previously characterized by XRD, SEM, and Vickers hardness measurements. Thermal properties have been measured on as-cast at thermally treated alloys using the laser flash method in the temperature range 25 °C to 600 °C to determine the thermal diffusivity, α, thermal conductivity, λ, and specific heat, C<sub>p</sub>. Dilatometry experiments were also carried out to obtain the linear thermal expansion coefficient, CTE, as a function of temperature.</div><div>For all materials, the thermal conductivity increases with temperature from 15 W/m·K at RT to 28 W/m·K at 600 °C and does not significantly depend on the thermal treatment for the Mo-HEA and W-HEA, but increases after aging for the Ta-HEA and Ti-HEA. These values are lower than those of W (∼122 W/m·K at 600 °C) and much lower than for CuCrZr-IG (∼354 W/m·K at 400 °C). The thermal expansion coefficients of these HEAs, ∼10 × 10<sup>−6</sup> °C<sup>−1</sup> at RT and ∼ 2 × 10<sup>−6</sup> °C<sup>−1</sup> at 650 °C are between those of CuCrZr and the W for the entire operative temperature range. These results indicate that the Cu<sub>5</sub>Cr<sub>35</sub>Fe<sub>35</sub>V<sub>20</sub>-X<sub>5</sub> (X = Ti, Ta, W, Mo) HEAs have a promising combination of the thermophysical properties, λ, C<sub>p</sub> and CTE, to act as thermal barrier in plasma-facing components that require the union of W- and Cu-based materials.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101767"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235217912400190X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work investigates the influence of composition on the thermal properties of the high entropy alloy family Cu5Cr35Fe35V20-X5 (at. %), where X = Ti, Ta, W or Mo in the framework of acting as a thermal barrier between the W-based plasma-facing elements and the CuCrZr or Cu-based heat sink components of the fusion reactor. The alloys were produced by arc melting and their microstructure and mechanical properties were previously characterized by XRD, SEM, and Vickers hardness measurements. Thermal properties have been measured on as-cast at thermally treated alloys using the laser flash method in the temperature range 25 °C to 600 °C to determine the thermal diffusivity, α, thermal conductivity, λ, and specific heat, Cp. Dilatometry experiments were also carried out to obtain the linear thermal expansion coefficient, CTE, as a function of temperature.
For all materials, the thermal conductivity increases with temperature from 15 W/m·K at RT to 28 W/m·K at 600 °C and does not significantly depend on the thermal treatment for the Mo-HEA and W-HEA, but increases after aging for the Ta-HEA and Ti-HEA. These values are lower than those of W (∼122 W/m·K at 600 °C) and much lower than for CuCrZr-IG (∼354 W/m·K at 400 °C). The thermal expansion coefficients of these HEAs, ∼10 × 10−6 °C−1 at RT and ∼ 2 × 10−6 °C−1 at 650 °C are between those of CuCrZr and the W for the entire operative temperature range. These results indicate that the Cu5Cr35Fe35V20-X5 (X = Ti, Ta, W, Mo) HEAs have a promising combination of the thermophysical properties, λ, Cp and CTE, to act as thermal barrier in plasma-facing components that require the union of W- and Cu-based materials.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.