{"title":"Transit-guided radiation therapy: a novel patient monitoring approach","authors":"Artur Latorre-Musoll , Gabriela Oses , Gabriela Antelo , Sergi Serrano-Rueda , Meritxell Mollà , Josep Sempau , Núria Jornet","doi":"10.1016/j.radonc.2024.110580","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Transit-Guided Radiation Therapy (TGRT) is a novel technique that uses the transit portal images (TPIs) acquired with Electronic Portal Image Devices (EPID) to quantify patient position errors during the treatment. It has been validated using anthropomorphic phantoms but a validation in a clinical setting was lacking. A pilot clinical study is presented to confirm our previous results.</div></div><div><h3>Materials and methods</h3><div>A prospective study was conducted between June and December 2022 with patients who received whole-brain or breast radiotherapy treatments. The selected treatments were composed of radiation fields using skin-flash, where the body contour projected a sharp edge on the EPID which has been used as a surrogate of the true patient position. Daily imaging procedures were applied as scheduled before running the one- and two-parameter model (1PM and 2PM) of the TGRT formalism on the acquired TPIs to independently estimate the patient position errors.</div></div><div><h3>Results</h3><div>43 patients and 1015 TPIs have been assessed. The 2PM showed a better correlation with the true position errors (<em>R</em><sup>2</sup> = 0.76 vs. 0.73), a lower detection threshold (0.77 mm vs. 1.24 mm), and a lower overcorrection risk above the detection threshold (7.0 % vs. 11.1 %) than the 1PM. Overall, the 2PM would have significantly reduced the true position errors by a factor of 0.58 (0.49 – 1.27) (<em>p</em> < 0.0001).</div></div><div><h3>Conclusion</h3><div>The TGRT technique has confirmed the ability to reduce the position errors in a clinical setting, demonstrating the potential to enhance the patient position monitoring without increasing treatment time or patient dose.</div></div>","PeriodicalId":21041,"journal":{"name":"Radiotherapy and Oncology","volume":"201 ","pages":"Article 110580"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiotherapy and Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167814024035588","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose
Transit-Guided Radiation Therapy (TGRT) is a novel technique that uses the transit portal images (TPIs) acquired with Electronic Portal Image Devices (EPID) to quantify patient position errors during the treatment. It has been validated using anthropomorphic phantoms but a validation in a clinical setting was lacking. A pilot clinical study is presented to confirm our previous results.
Materials and methods
A prospective study was conducted between June and December 2022 with patients who received whole-brain or breast radiotherapy treatments. The selected treatments were composed of radiation fields using skin-flash, where the body contour projected a sharp edge on the EPID which has been used as a surrogate of the true patient position. Daily imaging procedures were applied as scheduled before running the one- and two-parameter model (1PM and 2PM) of the TGRT formalism on the acquired TPIs to independently estimate the patient position errors.
Results
43 patients and 1015 TPIs have been assessed. The 2PM showed a better correlation with the true position errors (R2 = 0.76 vs. 0.73), a lower detection threshold (0.77 mm vs. 1.24 mm), and a lower overcorrection risk above the detection threshold (7.0 % vs. 11.1 %) than the 1PM. Overall, the 2PM would have significantly reduced the true position errors by a factor of 0.58 (0.49 – 1.27) (p < 0.0001).
Conclusion
The TGRT technique has confirmed the ability to reduce the position errors in a clinical setting, demonstrating the potential to enhance the patient position monitoring without increasing treatment time or patient dose.
期刊介绍:
Radiotherapy and Oncology publishes papers describing original research as well as review articles. It covers areas of interest relating to radiation oncology. This includes: clinical radiotherapy, combined modality treatment, translational studies, epidemiological outcomes, imaging, dosimetry, and radiation therapy planning, experimental work in radiobiology, chemobiology, hyperthermia and tumour biology, as well as data science in radiation oncology and physics aspects relevant to oncology.Papers on more general aspects of interest to the radiation oncologist including chemotherapy, surgery and immunology are also published.