{"title":"Solving Nonnative Combinatorial Optimization Problems Using Hybrid Quantum–Classical Algorithms","authors":"Jonathan Wurtz;Stefan H. Sack;Sheng-Tao Wang","doi":"10.1109/TQE.2024.3443660","DOIUrl":null,"url":null,"abstract":"Combinatorial optimization is a challenging problem applicable in a wide range of fields from logistics to finance. Recently, quantum computing has been used to attempt to solve these problems using a range of algorithms, including parameterized quantum circuits, adiabatic protocols, and quantum annealing. These solutions typically have several challenges: 1) there is little to no performance gain over classical methods; 2) not all constraints and objectives may be efficiently encoded in the quantum ansatz; and 3) the solution domain of the objective function may not be the same as the bit strings of measurement outcomes. This work presents “nonnative hybrid algorithms”: a framework to overcome these challenges by integrating quantum and classical resources with a hybrid approach. By designing nonnative quantum variational anosatzes that inherit some but not all problem structure, measurement outcomes from the quantum computer can act as a resource to be used by classical routines to indirectly compute optimal solutions, partially overcoming the challenges of contemporary quantum optimization approaches. These methods are demonstrated using a publicly available neutral-atom quantum computer on two simple problems of Max \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n-Cut and maximum independent set. We find improvements in solution quality when comparing the hybrid algorithm to its “no quantum” version, a demonstration of a “comparative advantage.”","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10636813","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10636813/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Combinatorial optimization is a challenging problem applicable in a wide range of fields from logistics to finance. Recently, quantum computing has been used to attempt to solve these problems using a range of algorithms, including parameterized quantum circuits, adiabatic protocols, and quantum annealing. These solutions typically have several challenges: 1) there is little to no performance gain over classical methods; 2) not all constraints and objectives may be efficiently encoded in the quantum ansatz; and 3) the solution domain of the objective function may not be the same as the bit strings of measurement outcomes. This work presents “nonnative hybrid algorithms”: a framework to overcome these challenges by integrating quantum and classical resources with a hybrid approach. By designing nonnative quantum variational anosatzes that inherit some but not all problem structure, measurement outcomes from the quantum computer can act as a resource to be used by classical routines to indirectly compute optimal solutions, partially overcoming the challenges of contemporary quantum optimization approaches. These methods are demonstrated using a publicly available neutral-atom quantum computer on two simple problems of Max
$k$
-Cut and maximum independent set. We find improvements in solution quality when comparing the hybrid algorithm to its “no quantum” version, a demonstration of a “comparative advantage.”