Mokhles M. Abdulghani;Wilbur L. Walters;H. Khalid Abed
{"title":"Enhancing the Classification Accuracy of EEG-Informed Inner Speech Decoder Using Multi-Wavelet Feature and Support Vector Machine","authors":"Mokhles M. Abdulghani;Wilbur L. Walters;H. Khalid Abed","doi":"10.1109/ACCESS.2024.3474854","DOIUrl":null,"url":null,"abstract":"Speech involves the synchronization of the brain and the oral articulators. Inner speech, also known as imagined speech or covert speech, refers to thinking in the form of sound without intentional movement of the lips, tongue, or hands. Decoding human thoughts is a powerful technique that can help individuals who have lost the ability to speak. This paper introduces a high-performance brain wave decoder based on inner speech, using a novel feature extraction method. The approach combined Support Vector Machine (SVM) and multi-wavelet feature extraction techniques to decode two EEG-based inner speech datasets (Data 1 and Data 2) into internally spoken words. The proposed approach achieved an overall classification accuracy of 68.20%, precision of 68.22%, recall of 68.20%, and F1-score of 68.21% for Data 1, and accuracy of 97.5%, precision of 97.73%, recall of 97.50%, and F1-score of 97.61% for Data 2. Additionally, the Area Under the Curve of the Receiver Operating Characteristic (AUC-ROC) demonstrated the validity of the proposed approach for classifying inner speech commands by achieving a macro-average of 78.76% and 99.32% for Data 1 and Data 2, respectively. The EEG-based inner speech classification method proposed in this research has the potential to improve communication for patients with speech disorders, mutism, cognitive development issues, executive function problems, and mental disorder.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"147929-147941"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706230","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706230/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Speech involves the synchronization of the brain and the oral articulators. Inner speech, also known as imagined speech or covert speech, refers to thinking in the form of sound without intentional movement of the lips, tongue, or hands. Decoding human thoughts is a powerful technique that can help individuals who have lost the ability to speak. This paper introduces a high-performance brain wave decoder based on inner speech, using a novel feature extraction method. The approach combined Support Vector Machine (SVM) and multi-wavelet feature extraction techniques to decode two EEG-based inner speech datasets (Data 1 and Data 2) into internally spoken words. The proposed approach achieved an overall classification accuracy of 68.20%, precision of 68.22%, recall of 68.20%, and F1-score of 68.21% for Data 1, and accuracy of 97.5%, precision of 97.73%, recall of 97.50%, and F1-score of 97.61% for Data 2. Additionally, the Area Under the Curve of the Receiver Operating Characteristic (AUC-ROC) demonstrated the validity of the proposed approach for classifying inner speech commands by achieving a macro-average of 78.76% and 99.32% for Data 1 and Data 2, respectively. The EEG-based inner speech classification method proposed in this research has the potential to improve communication for patients with speech disorders, mutism, cognitive development issues, executive function problems, and mental disorder.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.