Tiffany Yu, Richard Marx, Michael Hinds, Nicholas Schott, Emily Gong, Seongkyu Yoon, William Kessler
{"title":"Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity","authors":"Tiffany Yu, Richard Marx, Michael Hinds, Nicholas Schott, Emily Gong, Seongkyu Yoon, William Kessler","doi":"10.1208/s12249-024-02961-0","DOIUrl":null,"url":null,"abstract":"<div><p>During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development. During primary drying, process developers must be careful to avoid shelf temperatures that would result in overheating of edge vials causing the product sublimation interface temperature to rise above the critical (collapse) temperature. However, at lower shelf temperatures, center vials require longer to complete primary drying, risking collapse or melt-back due to incomplete drying. Both situations may result in poor product quality affecting drug stability, activity, and reconstitution times. We present a new approach for monitoring vial location-specific water vapor mass flow based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). The single vial monitor enables measurement of the gas flow velocity, water vapor temperature, and gas concentration from the sublimating ice, enabling the calculation of the mass flow rate which can be used in combination with a heat and mass transfer model to determine vial heat transfer coefficients and product resistance to drying. These parameters can in turn be used for robust and rapid process development and control.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02961-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development. During primary drying, process developers must be careful to avoid shelf temperatures that would result in overheating of edge vials causing the product sublimation interface temperature to rise above the critical (collapse) temperature. However, at lower shelf temperatures, center vials require longer to complete primary drying, risking collapse or melt-back due to incomplete drying. Both situations may result in poor product quality affecting drug stability, activity, and reconstitution times. We present a new approach for monitoring vial location-specific water vapor mass flow based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). The single vial monitor enables measurement of the gas flow velocity, water vapor temperature, and gas concentration from the sublimating ice, enabling the calculation of the mass flow rate which can be used in combination with a heat and mass transfer model to determine vial heat transfer coefficients and product resistance to drying. These parameters can in turn be used for robust and rapid process development and control.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.