R-loops’ m6A modification and its roles in cancers

IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Cancer Pub Date : 2024-10-18 DOI:10.1186/s12943-024-02148-y
Yue Qiu, Changfeng Man, Luyu Zhu, Shiqi Zhang, Xiaoyan Wang, Dandan Gong, Yu Fan
{"title":"R-loops’ m6A modification and its roles in cancers","authors":"Yue Qiu, Changfeng Man, Luyu Zhu, Shiqi Zhang, Xiaoyan Wang, Dandan Gong, Yu Fan","doi":"10.1186/s12943-024-02148-y","DOIUrl":null,"url":null,"abstract":"R-loops are three-stranded nucleic acid structures composed of an RNA–DNA hybrid and a displaced DNA strand. They are widespread and play crucial roles in regulating gene expression, DNA replication, and DNA and histone modifications. However, their regulatory mechanisms remain unclear. As R-loop detection technology advances, changes in R-loop levels have been observed in cancer models, often associated with transcription-replication conflicts and genomic instability. N6-methyladenosine (m6A) is an RNA epigenetic modification that regulates gene expression by affecting RNA localization, splicing, translation, and degradation. Upon reviewing the literature, we found that R-loops with m6A modifications are implicated in tumor development and progression. This article summarizes the molecular mechanisms and detection methods of R-loops and m6A modifications in gene regulation, and reviews recent research on m6A-modified R-loops in oncology. Our goal is to provide new insights into the origins of genomic instability in cancer and potential strategies for targeted therapy.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":27.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02148-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

R-loops are three-stranded nucleic acid structures composed of an RNA–DNA hybrid and a displaced DNA strand. They are widespread and play crucial roles in regulating gene expression, DNA replication, and DNA and histone modifications. However, their regulatory mechanisms remain unclear. As R-loop detection technology advances, changes in R-loop levels have been observed in cancer models, often associated with transcription-replication conflicts and genomic instability. N6-methyladenosine (m6A) is an RNA epigenetic modification that regulates gene expression by affecting RNA localization, splicing, translation, and degradation. Upon reviewing the literature, we found that R-loops with m6A modifications are implicated in tumor development and progression. This article summarizes the molecular mechanisms and detection methods of R-loops and m6A modifications in gene regulation, and reviews recent research on m6A-modified R-loops in oncology. Our goal is to provide new insights into the origins of genomic instability in cancer and potential strategies for targeted therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
R 环的 m6A 修饰及其在癌症中的作用
R 环是一种三链核酸结构,由一条 RNA-DNA 杂交链和一条移位的 DNA 链组成。它们广泛存在,在调控基因表达、DNA 复制以及 DNA 和组蛋白修饰方面发挥着重要作用。然而,它们的调控机制仍不清楚。随着 R 环检测技术的发展,在癌症模型中观察到了 R 环水平的变化,这种变化往往与转录复制冲突和基因组不稳定性有关。N6-甲基腺苷(m6A)是一种 RNA 表观遗传修饰,通过影响 RNA 定位、剪接、翻译和降解来调控基因表达。通过查阅文献,我们发现带有 m6A 修饰的 R 环与肿瘤的发生和发展有关。本文总结了 R 环和 m6A 修饰在基因调控中的分子机制和检测方法,并回顾了肿瘤学中有关 m6A 修饰 R 环的最新研究。我们的目标是为癌症基因组不稳定性的起源和潜在的靶向治疗策略提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cancer
Molecular Cancer 医学-生化与分子生物学
CiteScore
54.90
自引率
2.70%
发文量
224
审稿时长
2 months
期刊介绍: Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer. The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies. Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.
期刊最新文献
The PI3K-AKT-mTOR axis persists as a therapeutic dependency in KRASG12D-driven non-small cell lung cancer Cellular mechanisms of combining innate immunity activation with PD-1/PD-L1 blockade in treatment of colorectal cancer Regulatory T cells in immune checkpoint blockade antitumor therapy Traditional Chinese medicine in treating upper digestive tract cancers Variability in non-tumor areas of colorectal cancer patients as revealed by endoscopic intestinal step biopsies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1