Polar Neptunes Are Stable to Tides

Emma M. Louden and Sarah C. Millholland
{"title":"Polar Neptunes Are Stable to Tides","authors":"Emma M. Louden and Sarah C. Millholland","doi":"10.3847/1538-4357/ad74ff","DOIUrl":null,"url":null,"abstract":"There is an intriguing and growing population of Neptune-sized planets with stellar obliquities near ∼90°. One previously proposed formation pathway is a disk-driven resonance, which can take place at the end stages of planet formation in a system containing an inner Neptune, outer cold Jupiter, and protoplanetary disk. This mechanism occurs within the first ∼10 Myr, but most of the polar Neptunes we see today are ∼Gyr old. Up until now, there has not been an extensive analysis of whether the polar orbits are stable over ∼Gyr timescales. Tidal realignment mechanisms are known to operate in other systems, and if they are active here, this would cause theoretical tension with a primordial misalignment story. In this paper, we explore the effects of tidal evolution on the disk-driven resonance theory. We use both N-body and secular simulations to study tidal effects on both the initial resonant encounter and long-term evolution. We find that the polar orbits are remarkably stable on ∼Gyr timescales. Inclination damping does not occur for the polar cases, although we do identify subpolar cases where it is important. We consider two case study polar Neptunes, WASP-107 b and HAT-P-11 b, and study them in the context of this theory, finding consistency with present-day properties if their tidal quality factors are Q ≳ 104 and Q ≳ 105, respectively.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad74ff","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is an intriguing and growing population of Neptune-sized planets with stellar obliquities near ∼90°. One previously proposed formation pathway is a disk-driven resonance, which can take place at the end stages of planet formation in a system containing an inner Neptune, outer cold Jupiter, and protoplanetary disk. This mechanism occurs within the first ∼10 Myr, but most of the polar Neptunes we see today are ∼Gyr old. Up until now, there has not been an extensive analysis of whether the polar orbits are stable over ∼Gyr timescales. Tidal realignment mechanisms are known to operate in other systems, and if they are active here, this would cause theoretical tension with a primordial misalignment story. In this paper, we explore the effects of tidal evolution on the disk-driven resonance theory. We use both N-body and secular simulations to study tidal effects on both the initial resonant encounter and long-term evolution. We find that the polar orbits are remarkably stable on ∼Gyr timescales. Inclination damping does not occur for the polar cases, although we do identify subpolar cases where it is important. We consider two case study polar Neptunes, WASP-107 b and HAT-P-11 b, and study them in the context of this theory, finding consistency with present-day properties if their tidal quality factors are Q ≳ 104 and Q ≳ 105, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极地海王星对潮汐很稳定
海王星大小的行星中,恒星倾角接近 ∼90°的行星数量在不断增加,令人好奇。之前提出的一种形成途径是磁盘驱动共振,这种共振可能发生在包含内海王星、外冷木星和原行星盘的系统中行星形成的末期阶段。这种机制发生在最初的 ∼10 Myr 内,但我们今天看到的极地海王星大多有 ∼Gyr 的年龄。到目前为止,还没有对极地轨道在 ∼Gyr 时间尺度上是否稳定进行过广泛的分析。众所周知,潮汐对齐机制在其他系统中也起作用,如果潮汐对齐机制在这里也起作用,就会与原始错位理论产生矛盾。在本文中,我们探讨了潮汐演化对磁盘驱动共振理论的影响。我们使用 N-体和世俗模拟来研究潮汐对初始共振相遇和长期演化的影响。我们发现极轨道在 ∼Gyr 时间尺度上非常稳定。倾角阻尼在极地情况下并不存在,不过我们发现在亚极地情况下,倾角阻尼非常重要。我们考虑了两个极地海王星案例--WASP-107 b和HAT-P-11 b,并在这一理论背景下对它们进行了研究,发现如果它们的潮汐质量因子分别为Q ≳ 104和Q ≳ 105,它们的性质与现在的性质是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultraviolet Flux and Spectral Variability Study of Blazars Observed with UVIT/AstroSat The Peculiar Disk Evolution of 4U 1630-472 Observed by Insight-HXMT During its 2022 and 2023 Outbursts Stellar Metallicities and Gradients in the Faint M31 Satellites Andromeda XVI and Andromeda XXVIII Tidal Spin-up of Subdwarf B Stars Numerical Experiment on the Influence of Granulation-induced Waves on Solar Chromosphere Heating and Plasma Outflows in a Magnetic Arcade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1